跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉旭唐
研究生(外文):Syu-Tang Liu
論文名稱:酮基團液晶環氧樹脂之合成及其奈米碳管複合材料之熱性質研究
論文名稱(外文):Synthesis of liquid crystalline epoxy resin with Ketone mesogen and its thermal properties of LCE/CNT composites
指導教授:何宗漢何宗漢引用關係
指導教授(外文):Tsung-Han Ho
口試委員:鄭錫勳顏福杉林烈利
口試委員(外文):Shi-Shiun ChengFu-Sha YenLieh-Li Lin
口試日期:2015-06-26
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:112
中文關鍵詞:酮基團
外文關鍵詞:Ketone mesogen
相關次數:
  • 被引用被引用:2
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,電子元件的散熱問題在3C產業中引起相當大的重視,在高分子材料中,液晶環氧樹脂已經獲得相當大的關注,因為其優異性能,如高機械性質、高耐熱性及低熱膨脹係數等特性,但其導熱係數仍然受到限制;因此本研究主要製備導熱複合材料來改善材料的導熱率並探討其熱性質。
  研究分成兩部分:第一部分合成酮基團液晶環氧樹脂 (LCE),並利用FTIR、1H-NMR及MS鑑定其結構。利用DSC及POM分析LCE的液晶相範圍及液晶型態。由DSC顯示LCE的液晶相範圍為升溫過程在125oC~135oC之間;利用POM在液晶相範圍可觀察到馬爾他十字 (Maltese Cross)之液晶相,其結果與DSC曲線相符合。使用硬化劑DDM及DDS以DSC來探討LCE之硬化反應,結果顯示DDM系統之起始硬化速率比DDS系統快;在硬化過程中,利用POM觀察DDM系統有雙折射現象而DDS系統卻沒有;利用DSC在非恆溫條件下探討其硬化動力學,並使用Kissinger和Ozawa法來計算活化能 (Ea),其結果顯示DDS系統高於DDM系統。第二部分是將自行合成的LCE做為基材,添加不同比例之奈米碳管 (CNT)做為填充材料,經熱硬化來製備LCE/CNT複合材料。利用SEM觀察複合材料之形態,以TGA、TMA及Hot-disk探討複合材料之熱性質。由SEM結果顯示,隨著CNT含量增加,且均勻的分散於LCE中;由TMA結果顯示,其玻璃轉移溫度 (Tg)隨著CNT添加量增加而增加,而熱膨脹係數 (CTE)則會隨之下降。TGA及Hot-disk結果顯示,其熱穩定性、焦碳殘餘率及熱傳導係數都隨著導熱填充材料的增加而增加,其熱穩定性可達到400oC。

  In recent years, heat dissipation of electronic component problems caused considerable attention in the 3C industry. In polymer materials, liquid crystalline epoxy resin is in the limelight because of many peculiar properties such as excellent mechanical, high heat resistance and low coefficients of thermal expansion, but its thermal conductivity is still restricted. Therefore, the purpose of this research, we will focus on the preparation of thermal conductive composite to improve the thermal conductivity and research its thermal properties.
This research is mainly divided into two parts: First, the liquid crystalline epoxy resin with Ketone mesogen (LCE) was synthesized and its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectroscopy (MS). The liquid crystal mesophase range and liquid crystal phase were characterized by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The DSC result showed that the liquid crystal mesophase range of LCE is at 125oC~135oC on heating process. The liquid crystal phase of Maltese cross was observed during liquid crystal mesophase range by POM, the result was consistent with the DSC curve. The curing reaction of LCE was monitored that using diaminodiphenylmethane (DDM) and diaminodiphenylsulfone (DDS) as curing agent by DSC. The results showed that the curing reaction of DDM system proceeded faster than DDS system in the initial stage of the curing reaction. Birefringence with DDM system was observed during curing processes by POM, but the DDS system didn’t. The cured kinetic studies by DSC non-isothermal conditions and the activation energy (Ea) are calculated according to the models of Kissinger and Ozawa. The results showed that the Ea of DDS system was higher than DDM system. In the second part, we use the composites of LCE with different ratios of carbon nanotube to prepare LCE/CNT composites. The morphology of LCE/CNT composites was characterized by field emission scanning electron microscopy (SEM), and the thermal properties of LCE/CNT composites were characterized by thermal gravimetric analysis (TGA), thermal mechanical analyzer (TMA) and Hot-disk. The SEM results showed that more CNT was added, the better dispersion was in the LCE. The TMA results showed that the glass transition temperature (Tg) was increased and the coefficient of thermal expansion (CTE) of LCE/CNT composites was decreased significantly with the addition of CNT. TGA and Hot-disk results showed that the thermal stability, char yield and thermal conductivity were increased by filler contents, and its thermal stability stand up to 400oC.

目錄
中文摘要 i
Abstract iii
誌謝 v
目錄 vi
Scheme viii
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 前言 1
1-2 導熱複合材料之現況及發展 2
1-3 研究目的 3
第二章 文獻回顧 4
2-1 液晶簡介 4
2-1-1 液晶起源 5
2-1-2 液晶的種類 7
2-1-3 液晶分子的結構 13
2-2 環氧樹脂簡介 14
2-3 硬化劑簡介 15
2-4 液晶環氧樹脂簡介 19
2-5 液晶高分子簡介 20
2-6 導熱複合材料 39
2-6-1 熱傳導理論 39
2-6-2 導熱機制 39
2-6-3 複合材料 40
2-6-4 奈米碳管 41
2-6-5 導熱高分子複合材料 42
第三章 實驗 45
3-1 實驗流程圖 45
3-2 材料與藥品 46
3-3 實驗裝置圖 47
3-4 儀器設備 50
3-5 實驗步驟 52
3-5-1 p-glycidyloxybenzaldehyde (ER)之合成 52
3-5-2 Liquid crystalline epoxy resin (LCE)之合成 53
3-5-3 奈米碳管之酸化改質 55
3-5-4 LCE/CNT複合材料之製備及熱硬化 56
3-6 結構鑑定與物性測試 57
第四章 結果與討論 60
4-1 LCE之合成鑑定 60
4-2 奈米碳管之表面改質鑑定 63
4-3 液晶形態之探討 65
4-3-1 DSC液晶相範圍探討 65
4-3-2 POM液晶相觀察 66
4-4 熱硬化之探討 68
4-5 硬化動力學參數探討 71
4-6 LCE/DDM及LCE/DDS之熱性質探討 78
4-7 LCE/CNT複合材料之探討 80
4-7-1 SEM形態觀察 80
4-7-2 LCE/CNT複合材料之液晶相觀察 82
4-7-3 Hot-Disk熱傳導係數分析 84
4-7-4 TGA熱穩定性分析 86
4-7-5 TMA熱機械性質分析 88
第五章 結論 90
參考文獻 92

1.G. R. Xu, M. J. Xu, B. Li, 2014, “Synthesis and characterization of a novel epoxy resin based on cyclotriphosphazene and its thermal degradation and flammability performance”, Polymer Degradation and Stability, Vol. 109, p. 240.
2.偉春,譚松庭,劉敏娜,王霞瑜,2002,“環氧樹脂/液晶聚合物體系的形態、力學性能和熱穩定性",高分子學報,第2期,頁187。
3.蔡智奇,2007,“液晶環氧樹脂的合成與固化行為研究”,浙江大學化學工程,博士論文。
4.Q. Lin, A. F. Yee, J. D. Earls, Robert E. H. Jr. H.J. Sue, 1994, “Phase transformations of a liquid crystalline epoxy during curing”, POLYMER, Vol. 35 Number 12, p. 2679.
5.謝素雯,曾寵平,2010,”液晶環氧樹脂研究進展”,熱固性樹脂,卷25,第3期,頁25。
6.馬傳國、容敏智、章明秋,2002, ”導熱高分子複合材料的研究與應用”,材料工程,卷7,頁40。
7.徐任信,單云剛,魯學林,王鈞,2008,”短切碳纖維/AlN/環氧樹脂絕緣導熱複合材料性能研究”,絕緣材料,卷41,第3期,頁33。
8.P. G. De Gennes, J. Prost, 1993, “The Physics of Liquid Crystals-Second Edition”, International Series of Monographs on Physics, Vol. 83.
9.S. Malkondu, A. Kocak, 2013, “Novel liquid crystal trimers with a wide mesophase range”, Journal of Molecular Liquids, Vol. 188, p. 167.
10.F. Reinitzer, 1989, “Contributions to the knowledge of cholesterol”, Liquid Crystals, Vol. 5, p. 7.
11.G. Friedel, 1912, “Leçons de Cristallographie”, Bull. Amer. Math. Soc, Vol. 18, p. 364.
12.松本正一,角田市良合著,劉瑞祥譯,1996,”液晶之基礎與應用”,國立編譯館出版。
13.P. J. Colling, M. Hird著,楊怡寬、郭蘭生、鄭殷立編譯,2001,”液晶化學及物理入門 (Introduction to Liquid Crystals Chemistry and Physicals)”,偉明圖書有限公司。
14.B. Bahadur, 1990, “Liquid Crystal, Applications and Uses”, World Scientific, Vol.
15.X. J. Wang, and Q. F. Zhou, 2004, “Liquid Crystalline Polymers”, World Scientific.
16.D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, 1998, ”Handbook of Liquid crystals”, Wiley-VCH, Vol. 2a, 2b.
17.Q. Y. Li, J. S. Hu, B. L. Zang, and B. Y. Zhang, 2004, “Textuees of Side-Chain Cholesteric Liquid Crystalline Elastomers”, International Symposium on Polymer Chemistry.
18.H. Lee, K. Neville, 1972, “Handbook of Epoxy Resins”, McGraw-Hill.
19.M. S. Bhatnagar, 1993, “Epoxy resins from 1980 to date. Part 1”, Polym.-Plast. Technol. Eng., Vol. 32, p. 53.
20.B. Ellis, 1993, “Chemistry and Technology of Epoxy Resin”, BlackieAcademic &Professional.
21.垣內弘,1989,環氧樹脂應用實務,復漢出版社。
22.李廣宇,2007,環氧膠黏劑與應用技術,化學工業出版社。
23.P. J. Pearce, B.C. Ennis, C. E. M. Morris., 1988, “Tough, high temperature aerospace epoxy resin system”, Polym. Commun., Vol. 29, p. 93.
24.C. Gouri, R. Ramaswamy, K. N. Ninan, 2000, “Studies on the adhesive properties of solid elastomer-modified novolac epoxy resin”, Adhesion & Adhesives, Vol. 20, p. 305.
25.G. Liu, L. Zhang, X. Qu, Y. Li, J. Gao, L. Yang, 2001, “A new curing kinetic model and its application to BPSER/DDM epoxy system”, J. Therm. Anal. Calorim., Vol. 65, p. 837.
26.C. Carfagna, E. Amendola, M. Giamberini, 1997, “Liquid crystalline epoxy based thermosetting polymers”, Prog. Polym. Sci., Vol. 22, p. 1607.
27.Q. Guo, Y. Huang, Y. Y. Zhang, L. R. Zhu, B. L. Zhang, 2010, “Curing behavior of epoxy resins with a series of novel curing agents containing 4,4'-biphenyl and varying methylene units”, J. Therm. Anal. Calorim., Vol. 102, p. 915.
28.V. P. Shibaev, N. A. Plate, 1984, “Thermotropic liquid-crystalline polymers with mesogenic side groups”, Adv. Polym. Sci., Vol. 60, p. 173.
29.H. Finkelmann, G. Rehage, 1984, “Liquid crystal side chain polymers”, Adv. Polym. Sci., Vol. 60, p. 99.
30.T. Sun, Y. G. Lin, H. H. Winter, R. S. Porter, 1989, “Phase transitions of poly(ethylene terephthalate-co-p-hydroxybenzoic acid) liquid crystal by dynamic mechanical analysis”, Polymer, Vol. 30, p. 1257.
31.A. M. Donald, A. H. Windle, 1992, “Liquid crystalline polymers”, Cambridge University Press.
32.P. J. Colling, M. Hird著,楊怡寬、郭蘭生、鄭殷立編譯,2001,“液晶化學及物理入門 (Introduction to Liquid Crystals Chemistry and Physicals)”,偉明圖書有限公司。
33.C. Carfagna, E. Amendola, M. Giamberini, 1994, “Liquid crystalline epoxy resins containing binaphthyl group as rigid block with enhanced thermal stability”, Macromol. Chem. Phys., Vol. 195, p.2307.
34.J. Y. LEE, J. JANG, 1999, “Synthesis and Curing of Liquid Crystalline Epoxy Resin Based on Naphthalene Mesogen”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 37, p. 419.
35.J. Y. Lee, J. Jang, S. M. Hong, S. S. Hwang, K.U. Kim, 1991, “Relationship between the structure of the bridging group and curing of liquid crystalline epoxy resins”, Polymer, Vol. 40, p. 3197.
36.W. -F. A. SU, K. C. CHEN, S. Y. TSENG, 2000, “Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins”, Journal of Applied Polymer Science, Vol. 78, p. 446.
37.K. SADAGOPAN, D. RATNA, A. B. SAMUI, 2003, Synthesis and Characterization of Liquid-Crystalline Epoxy and Its Blend with Conventional Epoxy”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 41, p. 3375.
38.J. Y. Lee, J. Jang, 2006, “The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins”, Polymer, Vol. 47, p. 3036.
39.G. Liu, J. Gao, L. Song, W. Hou, L. Zhang, 2006, “Synthesis and Curing of Liquid-Crystalline Epoxy Resins Containing a Biphenyl Mesogen”, Macromol. Chem. Phys, Vol. 207, p. 2222.
40.H. Ren, J. Sun, B. Wu, Q. Zhou, 2006, “Synthesis and characterization of a novel epoxy resin containing Synthesis and characterization of a novel epoxy resin containing”, Polymer, Vol. 47, p. 8309.
41.G. Pan, Z. Du, C. Zhang, C. Li, X. Yang, H. Li, 2007, “Synthesis, characterization, and properties of novel novolac epoxy resin containing naphthalene moiety”, Polymer, Vol. 48, p. 3686.
42.Z. Q. CAI, J. SUN, Q.ZHOU, J. XU, 2007, “Synthesis and Characterization of a Novel Liquid-Crystalline Epoxy Resin Combining Biphenyl and Aromatic Ester-Type Mesogenic Units”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 45, p. 727.
43.Y. L. Liu, Z. Q. Cai, W. C. Wang, X. Wen, P. Pi, D. Zheng, J. Cheng, Z. Yang, 2011, “Mechanical Properties and Morphology Studies of Thermosets from a Liquid-Crystalline Epoxy Resin with Biphenol and Aromatic Ester Groups”, Macromol. Mater. Eng., Vol. 296, p.83.
44.Y. L. Liu, Z. Q. Cai, X. Wen, P. Pi, D. Zheng, J. Cheng, Z. Yang, 2011, “A new and efficient synthetic method of a liquid crystalline epoxy resin with biphenol and aromatic ester group”, Polym. Bull., Vol. 67, p. 57.
45.Z. Liu, G. Zhang, Z. Liu, H. Sun, C. Zhao, S.Wang, G. Li, H. Na, 2012, “Synthesis and properties of an epoxy resin containing trifluoromethyl side chains and its cross-linking networks with different curing agents”, Polymer Degradation and Stability, Vol. 97, p. 691.
46.Y. Li, P. Badrinarayanan, M.R. Kessler, 2013, “Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization”, Polymer., Vol. 54, p. 3017.
47.莊明家,熱傳遞原理及應用(上冊),徐式文教,2003。
48.李賢德,2013,利用靜電紡絲法製備氮化鋁纖維及應用於高導熱性氮化鋁/環氧樹脂複合材料之研究,高雄應用科技大學,碩士論文。
49.馬振基,1995,”高分子複合材料 上冊”,中正書局。
50.沈銘原,"熱塑性複合材料預浸材加工技術簡介",塑膠工業技術發展中心 技術組。
51.陳亞群,2007,”多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究”,國立清華大學材料科學與工程研究所,碩士論文。
52.王文進、李鴻岩、姜其斌,2008,“高導熱絕緣複合材料的研究進展”,絕緣材料,卷41,頁30。
53.L. Li, D. D.L. Chung, 1994, “Thermally conductivity polymer-matrix composites containing both AlN particles and SiC whiskers”, Journal of electronic materials, Vol. 23, p. 557.
54.S. Yu, P. Hing, and X. Hu, 2002, “Thermal conductivity of polystyrene–aluminum nitride composite”, Composites Part A, Vol. 33, p. 289.
55.L. C. Sima, S. R. Ramanana, H. Ismaila, K. N. Seetharamub, and T. J. Gohc, 2005, “Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes”, Thermochimica Acta, Vol. 430, p. 155.
56.W. Wanga, X. Yang, Y. Fang, J. Ding, and J. Yan, 2009, “Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride”, Applied Energy, Vol.86, p. 1196.
57.B. S. Hadavand, K. M. Javid, M. Gharagozlou, 2013, “Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite”, Materials and Design, Vol. 50, p. 62.
58.Y. X. Fu, Z. X. He, D. C. Mo, S. S. Lu, 2014, “Thermal conductivity enhancement with different fillers for epoxy resin adhesives”, Applied Thermal Engineering, Vol. 66, p. 493.
59.K. Kim, M. Kim, J. Kim, 2014, “Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles”, Composites Science and Technology, Vol. 103, p. 72.
60.S.H. Hsu, M. C. Wu, S. Chen, C. M. Chuang, S. H. Lin, W. F. Su, 2012, “Synthesis, morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites”, Carbon, Vol. 50, p. 896.
61.T. Agari, A. Ueda, S. Nagai, 1991, “Thermal-conductivities of composites in several types of dispersion-system”, J. Appl. Polym. Sci., Vol. 42, p. 1665.
62.J. Y. Lee, J. Jang, S. S. Hwang, S. M. Hong, K. U. Kim, 1998, “Synthesis and curing of liquid crystalline epoxy resins based on 4,4'-biphenol”, Polymer, Vol.39, p. 6121.
63.H. Galina, B. Mossety-Leszczak, 2007, “Liquid-Crystalline Epoxy Resins”, J. Appl. Polym. Sci., Vol. 105, p. 224.
64.H. E. Kissinger, 1957, “Reaction Kinetics in Differential Thermal Analysis”, Analytical Chemistry, Vol. 29, p. 1702.
65.T. Ozawa, 1970, “Kinetic Analysis of Derivative Curves in Thermal Analysis”, J. Therm. Anal., Vol. 2, p. 301.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top