|
[1] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 2005, 7, 801-802. [2] Sarathy, K. V.; Raina, G.; Yadav, R. T.; Kulkarni, G. U.; Rao, C. N. R. Thiol-Derivatized Nanocrystalline Arrays of Gold, Silver, and Platinum. J. Phys. Chem. B 1997, 48, 9876-9880. [3] Chen, S.H.; Yao, H.; Kimura, K. Reversible Transference of Au Nanoparticles across the Water and Toluene Interface: A Langmuir Type Adsorption Mechanism. Langmuir 2001, 17, 733-739. [4] Zhang, S.S.; Leem, G.; Srisombat, L.O.; Lee, T.R. Rationally Designed Ligands that Inhibit the Aggregation of Large Gold Nanoparticles in Solution. J. Am. Chem. Soc. 2008, 130, 113-120. [5] Zhou, J.F.; Ralston, J.; Sedev, R.; Beattie, D.A. Functionalized Gold Nanoparticles: Synthesis, Structure and Colloid Stability. J. Colloid Interface Sci. 2009, 331, 251-262. [6] Yang, J.; Sargent, E.H.; Kelley, S.O.; Ying, J.Y. A general Phase-Transfer Protocol for Metal Ions and Its Application in Nanocrystal Synthesis. Nat. Mater. 2010, 9, 179-179 [7] Yin, H.F.; Zhen, M.; Chi, M.; Dai, S. Heterostructured Catalysts Prepared by Dispersing Au@Fe2O3 Core-shell Structures on Supports and Their Performance in CO Oxidation. Catal. Today 2011, 160, 87-95. [8] 馬振基,奈米材料科技原理與應用,全華科技圖書臺北,2005。 [9] 賴英煌,光催化法製備金奈米粒子的研究,碩士論文,東海大學,2010。 [10] Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size-Dependent Chemistry: Properties of Nanocrystals. Chem. Eur. J. 2002, 8, 28-35. [11] 倪星元、沈軍、張志華,纳米材料的理化特性与应用,化學工業出版社,北京, 2006。 [12] Schimpf, S.; Lucas, M.; Mohr, C.; Rodemerck, U.; Brückner, A.; Radnik, J.; Hofmeister, H.; Claus, P. Supported Gold Nanoparticles: in-Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions. Catal. Today 2002, 72, 63-78. [13] Manikam, V.R.; Cheong, K.Y.; Razak, K.A.; Chemical Reduction Methods for Synthesizing Ag and Al Nanoparticles and Their Respective Nanoalloys, Mater. Sci. Eng. B 2011, 176, 187-203. [14] Yon, J.M.; Jamie, R.L. Manufactured Nanoparticles: An Overview of Their Cemistry, Interactions and Potential Environmental Implications. Sci. Total Environ. 2008, 400, 396-414. [15] 林琬蓉,FePt合金粒子之製備與性質研究,碩士論文,國立成功大學,2007。 [16] Schmid, G. Clusters and Colloids :From Theory to Applications, VCH, New York, NY, 1994. [17] Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179-1201. [18] Kanninen, P.; Johans, C.; Merta, J.; Kontturi, K. Influence of Ligand Structure on the Stability and Oxidation of Copper Nanoparticles. J. Colloid Interface Sci. 2008, 318, 88-95. [19] Liu, J.C.; Ruffini, N.; Pollot, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C.A.; Liotta, C.L.; Roberts, C.B. More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase. Ind. Eng. Chem. Res. 2010, 49, 8174-8179. [20] Fievet, F.; Lagier, J. P.; Figlarz, M. Preparing Monodisperse Metal Powders in Micrometer Sizes by the Polyol Process. MRS, Bullintin, 1989. [21] Jeyadevan, B.; Shinoda, K.; Justin, R. J.; Matsumoto, T.; Sato, K.; Takahashi, H.; Sato, Y.; Tohji, K. Polyol Process for Fe-based Hard(fct-FePt) and Soft(FeCo) Magnetic Nanoparticles IEEE Trans. Magn. 2006, 42, 3030-3035. [22] Xiong, Y.J.; Cai, H.G.; Wiley, B.J.; Wang, J.G.; Kim, M.J.; Xia, Y.N. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. J. Am. Chem. Soc. 2007, 129, 3665-3675. [23] Ai, F.R.; Yaon, A.H.; Huang, W.H.; Wang, D.P.; Zhang, X. Synthesis of PVP-Protected NiPd Nanoalloys by Modified Polyol Process and Their Magnetic Properties. Physica E 2010, 42, 1281-1286. [24] Wang, W.H., Cao, G.G., Synthesis and Structural Investigation of Pd/Ag Bimetallic Nanoparticles Prepared by the Solvothermal method, J. Nanoparticle Res. 2007, 9, 1153-1161. [25] Wang, W.H.; Zhao, B.; Li, P.; Tan, X.J. Fabrication and Characterization of Pd/Ag Alloy Hollow Spheres by the Solvothermal Method. J. Nanoparticle Res. 2008, 10, 543-548. [26] Jang, J.S.; Joshi, U.A.; Lee, J.S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111, 13280-13287. [27] Yang, Y.; Matsubara, S.; Xiong, L.M.; Hayakawa, T.; Nogami, M. Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties. J. Phys. Chem. C 2007, 111, 9095-9104. [28] Galletti, A.M.R.; Antonetti, C.; Venezia, A.M.; Giambastiani, G. An Easy Microwave-Assisted Process for the Synthesis of Nanostructured Palladium Catalysts and Their Use in the Selective Hydrogenation of Cinnamaldehyde. Appl. Catal., A 2010, 386, 124-131. [29] Athilakshmi, J.; Ramanathan, S.; Chand, D. K. Facile Synthesis of Palladium Nanoclusters and Their Catalytic Activity in Sonogashira Coupling Reactions. Tetrahedron Lett. 2008, 49, 5286-5288. [30] Murray, B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystals Assembliesc. Annu. Rev. Mater. Sci. 2000, 30, 545-610. [31] Cubillas, P.; Anderson, M.W. Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley &; Sons Inc, Manchester, 2010. [32] Wang, D.H.; Li, Y.D. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044-1060. [33] Chung, Y.M.; Rhee, H.K. Dendrimer-Templated Ag–Pd Bimetallic Nanoparticles. J. Colloid Interface Sci., 2004, 271, 151-724. [34] Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A. Role of Steric Stabilization on the Arrested Growth of Silver Nanocrystals in Supercritical Carbon Dioxide. J. Phys. Chem. B 2002, 106, 12178-12185. [35] Johnston, K. P.; Harrison, K. L.; Clarke, M. J.; Howdle, S. M.;Heitz, M. P.; Bright, F. V.; Carlier, C.; Randolph, T. W. Water-in-Carbon Dioxide Microemulsions: An Environment for Hydrophiles Including Proteins. Science 1996, 271, 624-626. [36] Da Rocha, S. R. P.; Dickson, J.; Cho, D.; Rossky, P. J.; Johnston, K. P. Stubby Surfactants for Stabilization of Water and CO2 Emulsions: Trisiloxanes. Langmuir 2003, 19, 3114-3020. [37] McLeod, M. C.; McHenry, R. S.; Beckman, E. J.; Roberts, C. B. Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfluoropolyether/CO2 Reverse Micelle Systems. J. Phys. Chem. B 2003, 107, 2693-2700. [38] Ji, M.; Chen, X.; Wai, C. M.; Fulton, J. L. Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. J. Am. Chem. Soc. 1999, 121, 2631-2632. [39] Liu, J.; Raveendran, P.; Shervani, Z.; Ikushima, Y.; Hakuta, Y. Synthesis of Ag and AgI Quantum Dots in AOT-Stabilized Water-in-CO2 Microemulsions. Chem Eur. J. 2005, 11, 1854-1860. [40] Liu, J.; Han, B.; Li, G.; Zhang, X.; He, J.; Liu, Z. Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. Langmuir 2001, 17, 8040-8043. [41] Ryoo, W.; Webber, S. E.; Johnston, K. P. Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants. Ind. Eng. Chem. Res. 2003, 42, 6348-6458. [42] Dickson, J. L.; Smith, P. G..; Dhanuka, V. V.; Srinivasan, V.; Stone, M. T.; Rossky, P. J.; Behles, J. A.; Keiper, J. S.; Xu, B.; Johnson, C.; DeSimone, J. M.; Johnston, K. P. Interfacial Properties of Fluorocarbon and Hydrocarbon Phosphate Surfactants at the Water-CO2 Interface. Ind. Eng. Chem. Res. 2005, 44, 1370-1380. [43] Fan, X.; Potluri, V. K.; McLeod, M. C.; Wang, Y.; Liu, J.; Enick,R. M.; Hamilton, A. D.; Roberts, C. B.; Johnson, J. K.; Beckman, E. J Oxygenated Hydrocarbon Ionic Surfactants Exhibit CO2 Solubility. J. Am. Chem. Soc. 2005, 127, 11754-11762. [44] Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A. Nanocrystal Arrested Precipitation in Supercritical Carbon Dioxide. J. Phys. Chem. B 2001, 105, 9433-9440. [45] McLeod, M. C.; Gale, W. F.; Roberts, C. B. Metallic Nanoparticle Production Utilizing a Supercritical Carbon Dioxide Flow Process Langmuir 2004, 20, 7078-7082. [46] Fan, X.; McLeod, M. C.; Enick, R. M.; Roberts, C. B. Preparation of Silver Nanoparticles via Reduction of a Highly CO2-Soluble Hydrocarbon-Based Metal Precursor. Ind. Eng. Chem. Res. 2006, 45, 3343-3347. [47] Bell, P. W.; Anand, M.; Fan, X.; Enick, R. M.; Roberts, C. B. Stable Dispersions of Silver Nanoparticles in Carbon Dioxide with Fluorine-Free Ligands. Langmuir 2005, 21, 11608-11613. [48] Anand, M.; Bell, P. W.; Fan, X.; Roberts, C.B. Synthesis and Steric Stabilization of Silver Nanoparticles in Neat Carbon Dioxide Solvent Using Fluorine-Free Compounds. J. Phys. Chem. B 2006, 110, 14693-14701. [49] Hsieh, H.T.; Chin, W.K.; Tan, C.S. Facile Synthesis of Silver Nanoparticles in CO2-Expanded Liquids from Silver Isostearate Precursor. Langmuir 2010, 26, 10031-10035. [50] Jessop, P.G.; Subramaniam, B. Gas-expanded Liquids. Chem. Rev. 2007, 107, 2666-2694. [51] Xie, X.F.; Brown, J.S.; Bush, D.; Eckert, C.A. Bubble and Dew Point Measurements of the Ternary System Carbon Dioxide + Methanol + Hydrogen at 313.2 K. J. Chem. Eng. Data 2005, 50, 780-783. [52] Yin, J.Z.; Tan, C.S. Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid Phase Equilib. 2006, 242, 111-117. [53] Fujita, S.I.; Akihara, S. Zhao, F.; Liu, R.; Hasegawa, M.; Arai, M. Selective Hydrogenation of Cinnamaldehyde Using Ruthenium-Phosphine Complex Catalysts with Multiphase Reaction Systems in and under Pressurized Carbon Dioxide: Significance of Pressurization and Interfaces for the Control of Selectivity. J. Catal. 2005, 236, 101-111. [54] Hao, J.M.; Xi, C.Y.; Cheng, H.Y.; Liu, S.X.; Arai, M.; Zhao, F.Y. Influence of Compressed Carbon Dioxide on Hydrogenation Reactions in Cyclohexane with a Pd/C Catalyst. Ind. Eng. Chem. Res. 2008, 47, 6796-6800. [55] Wulandari, P.; Nagahiro, T.; Michioka, K.; Tamada, K.; Ishibashi, K.; Kimura, Y ,; Niwano, M. Coordination of carboxylate on metal nanoparticles characterized by Fourier transform infrared spectroscopy. Chem. Lett. 2008, 37, 888-889. [56] Tackett, J.E. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43, 483-489. [57] Wang, Y.C.; Du, X.Z.; Guo, L.; Liu, H.J. Chain orientation and headgroup structure in Langmuir monolayers of stearic acid and metal stearate (Ag, Co, Zn, and Pb) studied by infrared reflection-absorption spectroscopy. J. Chem. Phys. 2006, 124, 134706- 134706-9. [58] Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469-473. [59] Kashiwagi, Y.; Nakamoto, M. Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J. Colloid Interface Sci. 2006, 300, 169-175. [60] Mazumder, V.; Sun, S.H. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589. [61] Watt, J.; Young, N.; Yamamoto, M,; Kirkland, A,; Tilley, R.D. Synthesis and Structural Characterization of Branched Palladium Nanostructures. Adv. Mater. 2009, 21, 2288-2293. [62] Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845-910. [63] Yang C.C.; Wan C.C.; Wang Y.Y. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition. J. Colloid Interface Sci. 2004, 279, 433-439. [64] D'Souza, L.; Bera, P.; Sampath, S. Silver-palladium nanodispersions in silicate matrices: Highly uniform, stable, bimetallic structures. J. Colloid Interface Sci. 2002, 246, 92-99. [65] Devarajan, S.; Bera, P.; Sampath, S. Bimetallic nanoparticles: A single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates. J. Colloid Interface Sci. 2005, 290, 117-129. [66] Hu, B.J.; Ding, K.L.; Wu, T.B.; Zhou, X.S.; Fan, H.L.; Jiang, T.; Wang, Q.A.; Han, B.X. Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chem. Commun. 2010, 46, 8552-8554.
|