跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭為仁
研究生(外文):Wei Jen Cheng
論文名稱:黃耆水萃取物在人類嗜中性白血球的抗發炎作用
論文名稱(外文):The anti-inflammatory effects of Astragalus membranaceus water extract in human neutrophils
指導教授:沈建忠沈建忠引用關係黃聰龍黃聰龍引用關係
指導教授(外文):J. J. ShenT. L. Hwang
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系傳統中醫學
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:中醫黃耆嗜中性白血球發炎活性氧分子
外文關鍵詞:Chinese medicineastragalusneutrophilsinflammationreactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嗜中性白血球 (neutrophils) 是人體免疫的第一道防線,亦是人體產生發炎反應的重要推手。當嗜中性白血球被活化時,會產生大量的超氧陰離子 (superoxide anion) 並釋放彈性蛋白酶 (elastase) 以毒殺外來的病原菌,但同時也會對周邊的組織產生傷害。目前已知有些發炎疾病與嗜中性白血球的不當調控有關。在中醫理論中,「熱證」是一種發炎反應的表現,其中「熱證」又可以分為慢性的「虛熱證」與急性的「實熱證」。臨床上,兩種「熱證」會選用不同性質的藥物,而黃耆是治療「虛熱證」最具代表性的藥物,但是使用在「實熱證」會擔心引起疾病惡化。本研究使用的黃耆萃取物 (ASWE),是用傳統的煎煮方法萃取,作為主要實驗藥品,藉以探討 ASWE 是否對於嗜中性白血球的活化有抑制作用。研究發現,ASWE 可以抑制 N-formyl-L-methionyl-L-leucyl-L-phenylalanine 刺激嗜中性白血球活化產生的超氧陰離子、活性氧分子以及釋放彈性蛋白酶的作用。ASWE 不具有直接的細胞毒性。在無細胞的系統中,ASWE 可以清除活性氧分子,但並沒有直接清除超氧陰離子的能力。此外,ASWE 會減少活化態嗜中性白血球 CD11b 的表現並且減少黏連作用 (adhesion)。ASWE 不會影響活化態嗜中性白血球細胞內鈣離子的濃度,也不會影響 Akt、p38 與 JNK 的磷酸化。綜合本研究的結果顯示,ASWE 有潛力減少嗜中性白血球發炎反應造成的氧化傷害。因此,我們建議黃耆可以擴大其適應症:可以應用在嗜中性白血球引起的發炎疾病。
Neutrophils are the first line of defense of human immunity and play an important role in inflammatory reaction. When neutrophils are activated, they release superoxide anion and elastase to destroy pathogens. However, superoxide anion and elastase also damage surrounding tissues. It is well known that some kinds of inflammatory diseases are related to inappropriate regulation of neutrophils. In traditional Chinese medicine theory, “heat pattern” represents inflammatory reaction which can be divided to two types: “vacuity heat pattern” as chronic inflammation and “repletion heat pattern” as acute inflammation. Different medications are used for the two kinds of “heat pattern”. Astragalus is the most representative drug to treat “vacuity heat pattern”. However, using astragalus to treat “repletion heat pattern” is considered to worse the condition. In this study, we used traditional decocting method to make Astragalus mebranaceous water extract (ASWE), and investigated the anti-inflammatory effects in human neutrophils. The results showed ASWE inhibited superoxide anion generation, reactive oxygen species (ROS) production, and elastase release in N-formyl-L-methionyl-L-leucyl-L-phenylalanine activated human neutrophils. ASWE did not have cytotoxic effect in human neutrophils. In cell-free systems, ASWE showed ROS but not superoxide anion scavenging effect. In addition, ASWE repressed CD11b expression and adhesion response in activated human neutrophils. However, ASWE failed to alter Ca2+ mobilization and phosphorylation of Akt, p38 and JNK. This study demonstrates that ASWE may have potential to reduce oxidative damage in neutrophilic inflammatory response. Therefore, we suggest that Astragalus membranaceus may expand its clinical application to treat neutrophil-related inflammatory diseases.
指導教授推薦書
論文口試委員審定書
致謝.....iii
中文摘要.....iv
Abstract...v
目錄.....vi
縮寫對照表...x
表目錄....xii
圖目錄....xiii
附圖目錄.....xv
第一章 緒論.1
1.1. 研究動機.....1
1.2. 人類嗜中性白血球的活化.3
1.3. 受活化嗜中性白血球引起發炎反應的機制......4
1.3.1. 呼吸爆破作用 (Respiratory Burst).......5
1.3.2. 去顆粒化作用 (Degranulation)...6
1.3.3. 嗜中性白血球細胞外網狀結構 (Neutrophil extracellular traps) ...7
1.4. 嗜中性白血球在免疫反應的訊號傳遞路徑......8
第二章 實驗材料與方法.....16
2.1.實驗材料........16
2.1.1.實驗藥品來源.....16
2.1.2.實驗藥品黃耆的藥材來源.17
2.1.3.黃耆水萃取物的製備方法與產率.......17
2.1.4.黃耆水萃取物高效能液相層析 (HPLC).......18
2.1.5.黃耆水萃取物中黃耆甲苷定量分析 (LC MS/MS)18
2.2.實驗方法........21
2.2.1.人類嗜中性白血球製備......21
2.2.2.細胞存活率 (Cell viability)......21
2.2.3.超氧自由基 (Superoxide anion, O2·–) 釋放之測定22
2.2.4.彈性蛋白酶 (Elastase) 釋放之測定......24
2.2.5.細胞毒性測試 Lactate dehydrogenase (LDH).25
2.2.6.直接清除自由基能力之測定......26
2.2.7.細胞表面 CD11b 表現測定.29
2.2.8.細胞黏附作用 (adhesion) 測試....30
2.2.9.細胞移行作用 (migration) 測試....30
2.2.10.細胞內鈣離子濃度([Ca2+]i)測定..31
2.2.11.西方墨點法 (Western Blotting).....32
2.2.12.統計方法...33
第三章 實驗結果 34
3.1.黃耆水萃取物 (ASWE) 顯著抑制 fMLF 活化後的人類嗜中性白血球生成超氧陰離子與釋放彈性蛋白酶。......34
3.2.黃耆水萃取物 (ASWE) 抑制嗜中性白血球的活性並非經由細胞毒性而來。.....34
3.3.黃耆水萃取物 (ASWE) 能夠顯著抑制 fMLF 活化後人類嗜中性白血球細胞內及細胞外超氧自由基的生成。..35
3.4.黃耆水萃取物 (ASWE) 具有選擇性清除 AAPH 氧屬自由基的能力。..36
3.5.黃耆水萃取物 (ASWE) 顯著抑制 MMK1 活化後的人類嗜中性白血球生成超氧陰離子與釋放彈性蛋白酶。......39
3.6.黃耆水萃取物 (ASWE) 不影響 PMA 及 m-3M3FBS 活化後的人類嗜中性白血球生成超氧陰離子與釋放彈性蛋白酶。......40
3.7.黃耆水萃取物 (ASWE) 顯著抑制 PAF、LTB4及IL-8 活化後的人類嗜中性白血球釋放彈性蛋白酶的能力。......41
3.8.黃耆水萃取物 (ASWE) 減少 fMLF 活化後人類嗜中性白血球細胞表面 CD11b 的表現量。.41
3.9.黃耆水萃取物 (ASWE) 減少 fMLF 活化後人類嗜中性白血球的黏附作用 (adhesion)。.42
3.10.黃耆水萃取物 (ASWE) 不影響被活化的人類嗜中性白血球細胞內 Ca2+ 的濃度變化。.....42
3.11.黃耆水萃取物 (ASWE) 會輕微抑制 ERK 的磷酸化,但不影響 Akt、p38、JNK 的磷酸化。.43
第四章 討論 ........44
第五章 圖表........53
附圖..............86
參考文獻...............90

表目錄
Table 1. ASWE inhibits superoxide anion generation and elastase release in different stimulants activated human neutrophils.....53

圖目錄
Figure 1. Astragaloside IV and ASWE chromatogram by LC MS/MS......54
Figure 2. ASWE inhibits superoxide anion generation and elastase release in fMLF activated human neutrophils...56
Figure 3. ASWE does not induce LDH release in human neutrophils......58
Figure 4. ASWE inhibits ROS generation in activated human neutrophils in luminol-enhanced chemiluminescence assay........61
Figure 5. ASWE inhibits intracellular ROS generation in fMLF activated human neutrophils........ ......63
Figure 6. ASWE does not have superoxide anion scavenging ability in a cell-free xanthine/xanthine oxidase system........65
Figure 7. ASWE does not affect uric acid production in a cell-free xanthine/xanthine oxidase system...66
Figure 8. ASWE does not have reactive nitrogen species scavenging ability in cell-free assays...68
Figure 9. Oxygen radical absorbance capacity of ASWE in a cell-free system.71
Figure 10. ASWE inhibits superoxide anion generation and elastase release in MMK1 activated human neutrophils...73
Figure 11. ASWE does not inhibit superoxide anion generation and elastase release in m-3M3FBS activated human neutrophils......75
Figure 12. ASWE does not inhibit superoxide anion generation in PMA activated human neutrophils........ .......76
Figure 13. ASWE inhibits elastase release in PAF, LTB4 or IL-8 activated human neutrophils........ .......78
Figure 14. ASWE inhibits CD11b expression in fMLF activated human neutrophils...80
Figure 15. ASWE represses adhesion of fMLF activated human neutrophils to bEnd 3.1 cells........82
Figure 16. ASWE fails to affect intracellular Ca2+ mobilization in fMLF activated human neutrophils.......83
Figure 17. The effects of ASWE on phosphorylation of Akt and MAPKs in fMLF activated human neutrophils.......85

附圖目錄
附圖.......86
附圖1. Neutrophil recruitment to sites of inflammation..86
附圖2. Structure and activation of NADPH oxidase......87
附圖3. Neutrophil degranulation87
附圖4. Formation of neutrophil extracellular traps........88
附圖5. Signaling pathways of GPCRs involved in inflammation.....88
附圖6. The ERK, p38, and JNK MAP kinase cascades89
附圖7. Astragalus membranaceus sample.89
1. Badr, G., H. Ebaid, M. Mohany, and A. S. Abuelsaad. 2012. 'Modulation of immune cell proliferation and chemotaxis towards CC chemokine ligand (CCL)-21 and CXC chemokine ligand (CXCL)-12 in undenatured whey protein-treated mice', J Nutr Biochem, 23: 1640-6.
2. Berna-Erro, A., G. E. Woodard, and J. A. Rosado. 2012. 'Orais and STIMs: physiological mechanisms and disease', J Cell Mol Med, 16: 407-24.
3. Boulay, F., M. Tardif, L. Brouchon, and P. Vignais. 1990. 'The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors', Biochemistry, 29: 11123-33.
4. Brechard, S., and E. J. Tschirhart. 2008. 'Regulation of superoxide production in neutrophils: role of calcium influx', J Leukoc Biol, 84: 1223-37.
5. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. 'Neutrophil extracellular traps kill bacteria', Science, 303: 1532-5.
6. Brinkmann, V., and A. Zychlinsky. 2012. 'Neutrophil extracellular traps: is immunity the second function of chromatin?', J Cell Biol, 198: 773-83.
7. Bufe, B., T. Schumann, R. Kappl, I. Bogeski, C. Kummerow, M. Podgorska, S. Smola, M. Hoth, and F. Zufall. 2015. 'Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens', J Biol Chem, 290: 7369-87.
8. Cargnello, M., and P. P. Roux. 2011. 'Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases', Microbiol Mol Biol Rev, 75: 50-83.
9. Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. 'Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing', Stem Cells, 25: 2739-49.
10. Chen, P. J., Y. L. Wang, L. M. Kuo, C. F. Lin, C. Y. Chen, Y. F. Tsai, J. J. Shen, and T. L. Hwang. 2016. 'Honokiol suppresses TNF-alpha-induced neutrophil adhesion on cerebral endothelial cells by disrupting polyubiquitination and degradation of IkappaBalpha', Sci Rep, 6: 26554.
11. Chen, X., L. H. Peng, N. Li, Q. M. Li, P. Li, K. P. Fung, P. C. Leung, and J. Q. Gao. 2012. 'The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo', J Ethnopharmacol, 139: 721-7.
12. Cools-Lartigue, J., J. Spicer, S. Najmeh, and L. Ferri. 2014. 'Neutrophil extracellular traps in cancer progression', Cell Mol Life Sci, 71: 4179-94.
13. Dahlgren, C., and A. Karlsson. 1999. 'Respiratory burst in human neutrophils', J Immunol Methods, 232: 3-14.
14. de Oliveira, S., E. E. Rosowski, and A. Huttenlocher. 2016. 'Neutrophil migration in infection and wound repair: going forward in reverse', Nat Rev Immunol, 16: 378-91.
15. Dufton, N., and M. Perretti. 2010. 'Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists', Pharmacol Ther, 127: 175-88.
16. Dupre-Crochet, S., M. Erard, and O. Nubetae. 2013. 'ROS production in phagocytes: why, when, and where?', J Leukoc Biol, 94: 657-70.
17. Dworakowski, R., N. Anilkumar, M. Zhang, and A. M. Shah. 2006. 'Redox signalling involving NADPH oxidase-derived reactive oxygen species', Biochem Soc Trans, 34: 960-4.
18. Faurschou, M., and N. Borregaard. 2003. 'Neutrophil granules and secretory vesicles in inflammation', Microbes Infect, 5: 1317-27.
19. Freer, R. J., A. R. Day, J. A. Radding, E. Schiffmann, S. Aswanikumar, H. J. Showell, and E. L. Becker. 1980. 'Further studies on the structural requirements for synthetic peptide chemoattractants', Biochemistry, 19: 2404-10.
20. Fu, H., J. Karlsson, J. Bylund, C. Movitz, A. Karlsson, and C. Dahlgren. 2006. 'Ligand recognition and activation of formyl peptide receptors in neutrophils', J Leukoc Biol, 79: 247-56.
21. Hakkim, A., T. A. Fuchs, N. E. Martinez, S. Hess, H. Prinz, A. Zychlinsky, and H. Waldmann. 2011. 'Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation', Nat Chem Biol, 7: 75-7.
22. Hua, Y., and S. Nair. 2015. 'Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications', Biochim Biophys Acta, 1852: 195-208.
23. Huang, L. F., Y. M. Yao, J. F. Li, S. W. Zhang, W. X. Li, N. Dong, Y. Yu, and Z. Y. Sheng. 2012. 'The effect of Astragaloside IV on immune function of regulatory T cell mediated by high mobility group box 1 protein in vitro', Fitoterapia, 83: 1514-22.
24. Huang, R., and M. Li. 2016. 'Protective effect of Astragaloside IV against sepsis-induced acute lung injury in rats', Saudi Pharm J, 24: 341-7.
25. Jaquet, V., J. Marcoux, E. Forest, K. G. Leidal, S. McCormick, Y. Westermaier, R. Perozzo, O. Plastre, L. Fioraso-Cartier, B. Diebold, L. Scapozza, W. M. Nauseef, F. Fieschi, K. H. Krause, and K. Bedard. 2011. 'NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action', Br J Pharmacol, 164: 507-20.
26. Jenne, C. N., C. H. Wong, F. J. Zemp, B. McDonald, M. M. Rahman, P. A. Forsyth, G. McFadden, and P. Kubes. 2013. 'Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps', Cell Host Microbe, 13: 169-80.
27. Keshari, R. S., A. Verma, M. K. Barthwal, and M. Dikshit. 2013. 'Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils', J Cell Biochem, 114: 532-40.
28. Kolaczkowska, E., and P. Kubes. 2013. 'Neutrophil recruitment and function in health and inflammation', Nat Rev Immunol, 13: 159-75.
29. Lacy, P. 2006. 'Mechanisms of degranulation in neutrophils', Allergy Asthma Clin Immunol, 2: 98-108.
30. Lewis, H. D., J. Liddle, J. E. Coote, S. J. Atkinson, M. D. Barker, B. D. Bax, K. L. Bicker, R. P. Bingham, M. Campbell, Y. H. Chen, C. W. Chung, P. D. Craggs, R. P. Davis, D. Eberhard, G. Joberty, K. E. Lind, K. Locke, C. Maller, K. Martinod, C. Patten, O. Polyakova, C. E. Rise, M. Rudiger, R. J. Sheppard, D. J. Slade, P. Thomas, J. Thorpe, G. Yao, G. Drewes, D. D. Wagner, P. R. Thompson, R. K. Prinjha, and D. M. Wilson. 2015. 'Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation', Nat Chem Biol, 11: 189-91.
31. Li, M., Y. Z. Qu, Z. W. Zhao, S. X. Wu, Y. Y. Liu, X. Y. Wei, L. Gao, and G. D. Gao. 2012. 'Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules', Neurochem Int, 60: 458-65.
32. Li, X. T., Y. K. Zhang, H. X. Kuang, F. X. Jin, D. W. Liu, M. B. Gao, Z. Liu, and X. J. Xin. 2012. 'Mitochondrial protection and anti-aging activity of Astragalus polysaccharides and their potential mechanism', Int J Mol Sci, 13: 1747-61.
33. Liu, M., K. Wu, X. Mao, Y. Wu, and J. Ouyang. 2010. 'Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation of PKB/GLUT4 signaling in skeletal muscle', J Ethnopharmacol, 127: 32-7.
34. Manda, A., M. P. Pruchniak, M. Arazna, and U. A. Demkow. 2014. 'Neutrophil extracellular traps in physiology and pathology', Cent Eur J Immunol, 39: 116-21.
35. McIlroy, D. J., A. G. Jarnicki, G. G. Au, N. Lott, D. W. Smith, P. M. Hansbro, and Z. J. Balogh. 2014. 'Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery', J Crit Care, 29: 1133 e1-5.
36. Migeotte, I., D. Communi, and M. Parmentier. 2006. 'Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses', Cytokine Growth Factor Rev, 17: 501-19.
37. Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik. 2014. 'Reactive oxygen species in inflammation and tissue injury', Antioxid Redox Signal, 20: 1126-67.
38. Nauseef, W. M., and N. Borregaard. 2014. 'Neutrophils at work', Nat Immunol, 15: 602-11.
39. Phillipson, M., and P. Kubes. 2011. 'The neutrophil in vascular inflammation', Nat Med, 17: 1381-90.
40. Proebstl, D., M. B. Voisin, A. Woodfin, J. Whiteford, F. D'Acquisto, G. E. Jones, D. Rowe, and S. Nourshargh. 2012. 'Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo', J Exp Med, 209: 1219-34.
41. Reczek, C. R., and N. S. Chandel. 2015. 'ROS-dependent signal transduction', Curr Opin Cell Biol, 33: 8-13.
42. Rolig, A. S., J. E. Carter, and K. M. Ottemann. 2011. 'Bacterial chemotaxis modulates host cell apoptosis to establish a T-helper cell, type 17 (Th17)-dominant immune response in Helicobacter pylori infection', Proc Natl Acad Sci U S A, 108: 19749-54.
43. Roos, J., P. J. DiGregorio, A. V. Yeromin, K. Ohlsen, M. Lioudyno, S. Zhang, O. Safrina, J. A. Kozak, S. L. Wagner, M. D. Cahalan, G. Velicelebi, and K. A. Stauderman. 2005. 'STIM1, an essential and conserved component of store-operated Ca2+ channel function', J Cell Biol, 169: 435-45.
44. Roskoski, R., Jr. 2012. 'ERK1/2 MAP kinases: structure, function, and regulation', Pharmacol Res, 66: 105-43.
45. Ruhnau, J., K. Schulze, B. Gaida, S. Langner, C. Kessler, B. Broker, A. Dressel, and A. Vogelgesang. 2014. 'Stroke alters respiratory burst in neutrophils and monocytes', Stroke, 45: 794-800.
46. Salmon, M. D., and J. Ahluwalia. 2011. 'Pharmacology of receptor operated calcium entry in human neutrophils', Int Immunopharmacol, 11: 145-8.
47. Sandhaus, R. A., and G. Turino. 2013. 'Neutrophil elastase-mediated lung disease', COPD, 10 Suppl 1: 60-3.
48. Sangiuliano, B., N. M. Perez, D. F. Moreira, and J. E. Belizario. 2014. 'Cell death-associated molecular-pattern molecules: inflammatory signaling and control', Mediators Inflamm, 2014: 821043.
49. Schiffmann, E., B. A. Corcoran, and S. M. Wahl. 1975. 'N-formylmethionyl peptides as chemoattractants for leucocytes', Proc Natl Acad Sci U S A, 72: 1059-62.
50. Sun, L., and R. D. Ye. 2012. 'Role of G protein-coupled receptors in inflammation', Acta Pharmacol Sin, 33: 342-50.
51. Thannickal, V. J., and B. L. Fanburg. 2000. 'Reactive oxygen species in cell signaling', Am J Physiol Lung Cell Mol Physiol, 279: L1005-28.
52. Thomas, C. J., N. R. Lim, A. Kedikaetswe, Y. Y. Yeap, O. L. Woodman, D. C. Ng, and C. N. May. 2015. 'Evidence that the MEK/ERK but not the PI3K/Akt pathway is required for protection from myocardial ischemia-reperfusion injury by 3',4'-dihydroxyflavonol', Eur J Pharmacol, 758: 53-9.
53. Tilton, B., M. Andjelkovic, S. A. Didichenko, B. A. Hemmings, and M. Thelen. 1997. 'G-Protein-coupled receptors and Fcgamma-receptors mediate activation of Akt/protein kinase B in human phagocytes', J Biol Chem, 272: 28096-101.
54. Tsai, Y. F., H. P. Yu, W. Y. Chang, F. C. Liu, Z. C. Huang, and T. L. Hwang. 2015. 'Sirtinol inhibits neutrophil elastase activity and attenuates lipopolysaccharide-mediated acute lung injury in mice', Sci Rep, 5: 8347.
55. Waetzig, V., and T. Herdegen. 2005. 'Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage', Trends Pharmacol Sci, 26: 455-61.
56. Wang, Q., H. Zhou, H. Gao, S. H. Chen, C. H. Chu, B. Wilson, and J. S. Hong. 2012. 'Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase', J Neuroinflammation, 9: 32.
57. Wang, Z. S., F. Xiong, X. H. Xie, D. Chen, J. H. Pan, and L. Cheng. 2015. 'Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress', BMC Nephrol, 16: 44.
58. Woehler, A., and E. G. Ponimaskin. 2009. 'G protein--mediated signaling: same receptor, multiple effectors', Curr Mol Pharmacol, 2: 237-48.
59. Wright, H. L., R. J. Moots, and S. W. Edwards. 2014. 'The multifactorial role of neutrophils in rheumatoid arthritis'.
60. Ye, R. D., F. Boulay, J. M. Wang, C. Dahlgren, C. Gerard, M. Parmentier, C. N. Serhan, and P. M. Murphy. 2009. 'International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family', Pharmacol Rev, 61: 119-61.
61. Zhan, Y., S. Kim, Y. Izumi, Y. Izumiya, T. Nakao, H. Miyazaki, and H. Iwao. 2003. 'Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression', Arterioscler Thromb Vasc Biol, 23: 795-801.
62. Zhou, A., S. Li, J. Wu, F. A. Khan, and S. Zhang. 2014. 'Interplay between microRNAs and host pathogen recognition receptors (PRRs) signaling pathways in response to viral infection', Virus Res, 184: 1-6.
63. 岳美中. 1956. '黃耆之應用及其禁忌', 中醫雜志: 98-100.
64. 房麗微, and 劉玉欣. 2007. '中藥黃耆在臨床中應用', 當代醫學: 96-97.
65. 徐瑾. 2014. '中藥黃耆的臨床應用', 內蒙古中醫藥: 115.
66. 鄭榮先. 2016. '黃耆的藥理作用及在臨床中的應用研究', 中國實用醫藥, 11: 190-91.
67. 龐潤輝. 1981. '黃耆的藥理作用及其常用方劑之研究', 吉林中醫藥, 4: 38-40.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊