跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐立鴻
研究生(外文):Shiu,Li-Hung
論文名稱:分數階系統之多面體不確定強健穩定化
論文名稱(外文):Robust Stabilization for Fractional Order System with Polytopic Type Uncertainty
指導教授:李慶祥李慶祥引用關係
指導教授(外文):Lee,Ching-Hsiang
口試委員:凃文福呂振文
口試委員(外文):Tu,Wen-FuLu,Chen-Wen
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系博碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:分數階系統線性矩陣不等式(LMI)強健穩定容錯控制
外文關鍵詞:Fractional Order PID ControllerLinear Matrix Inequality (LMI)Robust StabilityFault-Tolerant Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有界不確定量之分數階系統之狀態方程式強健穩定化問題為本文探討之主題。文中考慮的不確定量假設為多邊形態之有界不確定量,當未確定量有過量巨大的變化時,使用文獻中的方法,吾人不能得到解。根據模擬的結果,能容許的多邊形態不確定量比範數有界形態不確定量要小的多。探討強健穩定化問題的目的在於給出有界不確定狀態分數階系統為穩定的條件,同時設計使用分數階之狀態反饋,使得閉迴路系統為強健穩定。文中推導的五個定理使用嚴格線性矩陣不等式,得到分數階系統之狀態反饋的公式。一系列的數值例題用以驗證設計的結果。當系統瀕臨故障或重大災害時,未確定量將有巨量的變化,而容錯控制因應的不確定量,正是多邊形態不確定量的邊緣。所以,最後將本文中設計控制器的方法應用到分數階系統的容錯控制上,以顯示所提議之方法的有效性。


關鍵詞:分數階系統、線性矩陣不等式(LMI)、強健穩定、容錯控制。

The problems of robust stability and stabilization for continuous time uncertain fractional order systems are solved in this thesis. The parametric uncertainty considered is of polytopic type. The purpose of the robust stability problem is to give condition such that the uncertain fractional order system is stable for all admissible uncertainties, while the purpose of robust stabilization is to design a state feedback control law such that the resulting closed-loop system is robustly stable. A strict linear matrix inequality (LMI) design approach is derived, and an explicit expression for the desired robust state feedback control law is also given. Numerical examples are provided to demonstrate the application of the proposed method, and finally the controller design method is applied to the fault-tolerant control to show the applicability of the design method.


Keywords: Fractional Order PID Controller, Linear Matrix Inequality (LMI), Robust Stability, Fault-Tolerant Control.

目錄
摘要 I
Abstract II
致謝 III
圖目錄 VI
符號說明 VII
第一章 緒論 1
1.1 文獻回顧與研究動機 1
1.2 論文綱要 3
第二章 控制系統設計與分數階控制系統概論 4
2.1 控制的重點觀念 4
2.1.1 狀態反饋控制器之設計 4
2.1.2 不確定整數階系統數學模型描述 5
2.1.3 整數階系統穩定之相關的基本定義 6
2.1.4 不確定整數階系統之強健穩定化 8
2.2 容錯控制 12
2.3 分數階微積分 15
2.3.1 分數階微積分定義Grünwald-Letnikov(G-L) 16
2.3.2 分數階微積分定義 Riemann-Liouville (R-L) 17
2.3.3 分數階微積分定義 Caputo 18
2.4 分數階系統 19
2.4.1 分數階拉普拉斯轉換 20
2.4.2 分數階微分方程 22
2.5 分數階系統 (Fractional order system) 的含意 23
2.6 分數階系統狀態方程式的穩定性 25
2.7 不具不確定量之分數階系統 26
第三章 具不確定量分數階系統強健穩定化 29
3.1 分數階系統數學模型描述 29
第四章 數值模擬 33
第五章 結論與未來研究方向 49
5.1 結論 49
5.2 未來研究方向 49
參考文獻 50


[1] C. T. Chen, Linear System Theory and Design, CBS College Publishing, 1984.
[2] K. Ogata, State Space Analysis of Control Systems, Englewood Cliffs, N.J.:Prentice-Hall, 1967.
[3] Zhao Yige, Wang Yuzhen, Liu Zhi, “Lyapunov Function Method for Linear Fractional Order Systems”, Proceedings of the 34th Chinese Control Conference July 28-30, 2015, Hangzhou, China.
[4] Saeks R, Murray J. “Fractional representation algebric geometry, and the simultaneous stabilization problem”, IEEE Transactions on Automatic Control, 1982, 27(4): 895 – 903.
[5] Vidyasagar M, Viswanadham N. “Algebraic design techniques for reliable stabilization”. IEEE Transactions on Automatic Control, 1982, 27(5): 1085 – 1095.
[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994.
[7] Thomas J. Osler, “Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series”, SIAM J. Appl. Math, Vol. 18, No. 3, May 1970.
[8] YangQuan Chen, Ivo Petr , Dingy Xue, “Fractional Order Control – A Tutorial”, American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009.
[9] K. B. Oldham and J. Spanier, “The Fractional Calculus. Academic Press”, New York, 1974.
[10] Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, 1993, New York, NY.
[11] K. B. Oldham and J. Spanier, “The Fractional Calculus. Academic Press”, New York, 1974.
[12] I. Podlubny, “Fractional Differential Equations. Academic Press”, San Diego, 1999.
[13]K. Gu, “ Control of Systems Under Norm Bounded Uncertainties in all Systems Matrices,” IEEE Transactions on Automatic Control, Vol. 39, No. 6, pp. 1320-1322, Jun. 1994.
[14]L. Xie, M. Fu, and C. E. de Souza, “ Control and Quadratic Stabilization of Systems with Parameter Uncertainty via Output Feedback,” IEEE Transactions on Automatic Control, Vol. 37, No. 8, pp. 1253-1256 , Aug. 1992.
[15]P. Gahinet, A. Nemirovski, A. Laub, and M.Chilali, The LMI Control Toolbox, Math Works Inc, 1995.
[16]S. Boyd, L. EI Ghaoui, Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[17]L. EI Ghaoui, R. Nikoukhah, and F. Delebecque, “LMITOOL: A Package for LMI Optimization,” Proceedings of 34th Conference on Decision and Control, pp. 3096-3101, Dec. 1995.
[18] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, Vol. 32, pp. 229-252, 2008.
[19] J. Jiang and X. Yu, ” Fault-tolerant control systems: A comparative study brtween active and passive approaches,” Annual Reviews in Control, Vol. 36, pp. 60-72, 2012.
[20] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
[21] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006.
[22] A. Oustaloup, La Derivation Non Entiere: Theorie, Syntheseet Applications, Hermes, Paris, 1995.
[23] I. Podlubny, Fractional-order systems and PIλDμ controllers, IEEE Transactions on Automatic Control 44(1) (1999) 208–213.
[24] H. F. Raynaud, A. Zergainoh, State-space representation for fractional order controllers, Automatica 36(7) (2000) 1017–1021.
[25] S. Manabe, The non-integer integral and its application to control systems, Electrotechnical Journal of Japan 6(3-4) (1961) 83–87.
[26] H. Ahn, Y. Chen, I. Podlubny, Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, Applied Mathematics and Computation 187(1) (2007) 27–34.
[27] M. S. Tavazoei, M. Haeri, A note on the stability of fractional order systems, Mathematics and Computers in Simulation 79(5) (2009) 1566–1576.
[28] Y. Chen, H. S. Ahn, D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Processing 86(10) (2006) 2794–2802.
[29] V. D. Gejji, A. Babakhani, Analysis of a system of fractional differential equations, Journal of Mathematical Analysis and Applications 293(2) (2004) 511–522.
[30] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications2, 265(2) (2002) 229–2482.
[31] M. P. Lazarevi’c, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mechanics Research Communications 33(2) (2006) 269–279.
[32] M. P. Lazarevi’c, A. M. Spasi’c, Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Mathematical and Computer Modelling 49 (3-4) (2009) 475–481.
[33] V. Lakshmikantham, S. Leela, M. Sambandham, Lyapunov theory for fractional differential equations, Communications in Applied Analysis 12(4) (2008) 365–376.
[34] T. A. Burton, Fractional differential equations and Lyapunovfunctionals, Nonlinear Analysis: Theory, Methods & Applications 74(16) (2011) 5648–5662.
[35] A. S. Ammour, S. Djennoune, M. Bettayeb, A sliding mode control for linear fractional systems with input and state dedelays, Communications in Nonlinear Science and Numerical Simulation 14(5) (2009) 2310–2318.
[36] S. Kamal, A. Raman, B. Bandyopadhyay, Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach, IEEE Transactions on Automatic Control 58(6) (2013) 1597–1602.
[37] Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45(8) (2009) 1965–1969.
[38] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications 59(5) (2010) 1810–1821.
[39] F. Zhang, C. Li, Y. Chen, Asymptotical stability of nonlinear fractional differential system with Caputo derivative, International Journal of Differential Equations (2011) doi:10.1155/2011/635165.
[40] S. J. Sadati, D. Baleanu, A. Ranjbar, R. Ghaderi, T. Abdeljawad, Mittag-Leffler stability theorem for fractional nonlinear systems with delay, Abstract and Applied Analysis (2010) doi:10.1155/2010/108651.
[41] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation 19(9) (2014) 2951–2957.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top