|
[1] C. T. Chen, Linear System Theory and Design, CBS College Publishing, 1984. [2] K. Ogata, State Space Analysis of Control Systems, Englewood Cliffs, N.J.:Prentice-Hall, 1967. [3] Zhao Yige, Wang Yuzhen, Liu Zhi, “Lyapunov Function Method for Linear Fractional Order Systems”, Proceedings of the 34th Chinese Control Conference July 28-30, 2015, Hangzhou, China. [4] Saeks R, Murray J. “Fractional representation algebric geometry, and the simultaneous stabilization problem”, IEEE Transactions on Automatic Control, 1982, 27(4): 895 – 903. [5] Vidyasagar M, Viswanadham N. “Algebraic design techniques for reliable stabilization”. IEEE Transactions on Automatic Control, 1982, 27(5): 1085 – 1095. [6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, 1994. [7] Thomas J. Osler, “Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series”, SIAM J. Appl. Math, Vol. 18, No. 3, May 1970. [8] YangQuan Chen, Ivo Petr , Dingy Xue, “Fractional Order Control – A Tutorial”, American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009. [9] K. B. Oldham and J. Spanier, “The Fractional Calculus. Academic Press”, New York, 1974. [10] Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, 1993, New York, NY. [11] K. B. Oldham and J. Spanier, “The Fractional Calculus. Academic Press”, New York, 1974. [12] I. Podlubny, “Fractional Differential Equations. Academic Press”, San Diego, 1999. [13]K. Gu, “ Control of Systems Under Norm Bounded Uncertainties in all Systems Matrices,” IEEE Transactions on Automatic Control, Vol. 39, No. 6, pp. 1320-1322, Jun. 1994. [14]L. Xie, M. Fu, and C. E. de Souza, “ Control and Quadratic Stabilization of Systems with Parameter Uncertainty via Output Feedback,” IEEE Transactions on Automatic Control, Vol. 37, No. 8, pp. 1253-1256 , Aug. 1992. [15]P. Gahinet, A. Nemirovski, A. Laub, and M.Chilali, The LMI Control Toolbox, Math Works Inc, 1995. [16]S. Boyd, L. EI Ghaoui, Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994. [17]L. EI Ghaoui, R. Nikoukhah, and F. Delebecque, “LMITOOL: A Package for LMI Optimization,” Proceedings of 34th Conference on Decision and Control, pp. 3096-3101, Dec. 1995. [18] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, Vol. 32, pp. 229-252, 2008. [19] J. Jiang and X. Yu, ” Fault-tolerant control systems: A comparative study brtween active and passive approaches,” Annual Reviews in Control, Vol. 36, pp. 60-72, 2012. [20] I. Podlubny, Fractional differential equations, Academic Press, New York, 1999. [21] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. [22] A. Oustaloup, La Derivation Non Entiere: Theorie, Syntheseet Applications, Hermes, Paris, 1995. [23] I. Podlubny, Fractional-order systems and PIλDμ controllers, IEEE Transactions on Automatic Control 44(1) (1999) 208–213. [24] H. F. Raynaud, A. Zergainoh, State-space representation for fractional order controllers, Automatica 36(7) (2000) 1017–1021. [25] S. Manabe, The non-integer integral and its application to control systems, Electrotechnical Journal of Japan 6(3-4) (1961) 83–87. [26] H. Ahn, Y. Chen, I. Podlubny, Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality, Applied Mathematics and Computation 187(1) (2007) 27–34. [27] M. S. Tavazoei, M. Haeri, A note on the stability of fractional order systems, Mathematics and Computers in Simulation 79(5) (2009) 1566–1576. [28] Y. Chen, H. S. Ahn, D. Xue, Robust controllability of interval fractional order linear time invariant systems, Signal Processing 86(10) (2006) 2794–2802. [29] V. D. Gejji, A. Babakhani, Analysis of a system of fractional differential equations, Journal of Mathematical Analysis and Applications 293(2) (2004) 511–522. [30] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications2, 265(2) (2002) 229–2482. [31] M. P. Lazarevi’c, Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mechanics Research Communications 33(2) (2006) 269–279. [32] M. P. Lazarevi’c, A. M. Spasi’c, Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach, Mathematical and Computer Modelling 49 (3-4) (2009) 475–481. [33] V. Lakshmikantham, S. Leela, M. Sambandham, Lyapunov theory for fractional differential equations, Communications in Applied Analysis 12(4) (2008) 365–376. [34] T. A. Burton, Fractional differential equations and Lyapunovfunctionals, Nonlinear Analysis: Theory, Methods & Applications 74(16) (2011) 5648–5662. [35] A. S. Ammour, S. Djennoune, M. Bettayeb, A sliding mode control for linear fractional systems with input and state dedelays, Communications in Nonlinear Science and Numerical Simulation 14(5) (2009) 2310–2318. [36] S. Kamal, A. Raman, B. Bandyopadhyay, Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach, IEEE Transactions on Automatic Control 58(6) (2013) 1597–1602. [37] Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45(8) (2009) 1965–1969. [38] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers and Mathematics with Applications 59(5) (2010) 1810–1821. [39] F. Zhang, C. Li, Y. Chen, Asymptotical stability of nonlinear fractional differential system with Caputo derivative, International Journal of Differential Equations (2011) doi:10.1155/2011/635165. [40] S. J. Sadati, D. Baleanu, A. Ranjbar, R. Ghaderi, T. Abdeljawad, Mittag-Leffler stability theorem for fractional nonlinear systems with delay, Abstract and Applied Analysis (2010) doi:10.1155/2010/108651. [41] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation 19(9) (2014) 2951–2957.
|