跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳聖偉
研究生(外文):Sheng-Wei Wu
論文名稱:基於自我注入鎖定技術之穿戴式生命徵象雷達感測器研製
論文名稱(外文):Development of Wearable Vital-Sign Radar Sensors Based on Self-Injection-Locked Technology
指導教授:曾昭雄曾昭雄引用關係
指導教授(外文):Chao-Hsiung Tseng
口試委員:林丁丙洪子聖張盛富
口試委員(外文):Ding-Bing LinTzyy-Sheng HorngSheng-Fuh Chang
口試日期:2018-07-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:穿戴式生命徵象雷達感測器自我注入鎖定
外文關鍵詞:Wearable Vital-Sign Radar SensorsSelf-Injection-Locked
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
  本論文係提出基於自我注入鎖定原理研製之小型化非接觸穿戴式雷達感測裝置,應用於監測人體生命徵象,包含呼吸、心跳及手腕脈搏。感測器的硬體方面由兩個部分組成,第一部分為主動天線感測器,第二部分為解調器。主動天線感測器的部分是使用一雙埠圓形微帶天線作為選頻器與BJT射頻放大器設計成的自振式主動天線,具有單一天線收發功能。解調器的部分是利用微分器與封包偵測器實現振幅解調,透過微分器將頻率調變之生理訊號轉變成振幅調變之訊號,再經封包偵測器完成生理訊號擷取。解調後之訊號輸入微控制器進行類比/數位轉換,最後將轉換後之數位訊號由低功耗藍牙模組發送至智慧型手機或筆記型電腦以實現隨時監測的宗旨。本論文的感測器除了具有傳統PPG之優點外,更兼具不易受到外在光雜訊干擾的優異性能。再者本文研製之感測器與Thought Technology生理回饋儀之量測結果比較得知,本文研製之感測裝置可獲得精確的測量結果,不僅呼吸及脈搏的波形與生理回饋儀量測近似外,脈搏訊號於主波峰及次波峰有更高的解析度。本文研製的雷達感測裝置具有低成本、高靈敏度、電路複雜性低及感測器面積縮小化等優點,且能使用單一感測器同時量測呼吸與心跳,其可攜性及便利性,將能達成穿戴式裝置測試者即時監控的目標。
  This thesis proposes a compact wearable and non-contact radar sensor, which is based on the self-injection locking mechanism to continueously monitor vital signs, such as respiration, heartbeat and wrist pulse. This radar sensor consists of two parts. The first part is an active integrated antenna (AIA), which is implemented by a two-port circular patch and a RF BJT amplifier. The antenna is not only treated as a frequency-selective resonator for the oscillator design, but also employed to radiate and receive the RF signal. Therefore, the developed AIA can be easily realize a compact radar sensor with a single antenna. On the other hand, the second part of the sensor is a demodulator, which is composed of a differentiator and an envelope detector. The differntiator is used to transform frequency-demodulated vital-sign signal to amplitude- demodulated one for improvement the detecting sensitivity. Then the measured vital sign is sent into microcontraller (MCU) to perform analong-to-digital conversion (ADC). By applying fast Fourier transform (FFT), the spectra of heartbeat and respiration signals could be obtained for the further medical-purpose judgement. Via the Bluetooth module, the vital signs can be transmitted into smart phone or laptop computer for continuously monitoring.
  The developed sensor in this thesis has not only the advantages of conventional PPG, but also a better capability of anti-interference. In addition, as compared with the measured results by the Thought Technology Biofeedback System, the measurement accuracy of the developed sensor has been demonstrated. Since the sensor proposed in this thesis has an excellent sensitivity, the measured waveforms are similar to those achieved by Biofeedback System with contact-type sensors. Additionally, by using the proposed sensor, the main and second peaks of the wrist pulse waveforms can be clearly identified. The radar sensor developed in this thesis has the advantages of low cost, high sensitivity, less circuit complexity, and small sensor occupation. Moreover, its portability and convenience reveal that the compact RF wearable device is successfully applied for real-time monitoring.
摘要 i
Abstract ii
目錄 iii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 6
A. 自我注入鎖定雷達 6
B. 單天線自我注入鎖定雷達 7
C. 雙基地自我注入鎖定雷達感測器 8
D. 基於注入式鎖定鎖相迴路之手腕脈搏感測器 10
E. 基於震幅解調之非接觸式感測器 11
1-3 章節說明 12
第二章 自我注入鎖定主動天線感測器研製 13
2-1 自振式主動天線設計 13
A. 天線設計與量測 13
B. 放大器設計與量測 19
C. 自振式主動天線設計與量測 23
2-2 感測器解調電路設計 33
A. 微分器設計及量測 34
B. 封包偵測器電路之設計及量測 37
2-3 主動天線感測器近距離靈敏度測試 40
第三章 感測器訊號處理電路研製 44
3-1 電源電路設計 44
A. 電池充電電路設計 45
B. 系統供電電路設計 47
3-2 類比電路設計 49
A. 基頻放大器設計及量測 49
B. 電壓隨偶器設計 51
3-3 傳輸與控制電路設計 52
A. 微控制器燒錄及周邊控制電路設計 53
B. 藍芽模組之電路設計 55
3-4 感測器之生命徵象量測驗證 56
A. 胸腔心肺訊號量測 58
B. 手腕脈搏量測 64
第四章 結論 70
參考文獻 71
[1] 行政院衛生福利部 [Online] Available: https://www.mohw.gov.tw/cp-16-33598-1.html
[2] Fitbit Inc., Fitbit charge 2, [online] Available: https://www.fitbit.com/tw/charge2
[3] Xiaomi Inc., Miband 2, [online] Available: http://www.mi.com/tw/miband2/
[4] Apple Inc., Apple Watch Series 3, [online] Available: https://www.apple.com/tw/apple-watch-series-3/
[5] Garmin Corp. , Garmin Heart Rate Monitor, [online] Available: http://www.garmin.com.tw/products/accessories/010-10997-10_010-00899-40
[6] AiQ Smart Clothing Inc., AiQ BioMan+, [online] Available: http://www.aiqsmartclothing.com/product-service/bioman-plus/
[7] K. Shelley and S. Shelley, “Pulse Oximeter Waveform: Photoelectric Plethysmography,” in Clinical Monitoring: Practical Applications for Anesthesia and Critical Care, Philadelphia, PA, USA: W.B. Saunders Company, 2001, pp. 420-428.
[8] E. A. Pelaez and E. R. Villegas, “LED power reduction trade-offs for ambulatory pulse oximetry,” in Conf. Proc. IEEE Eng. Med. Biol. Soc., Lyon, 2007, pp. 2296-2299.
[9] T. Vandenberk, J. Stans, G. V. Schelvergem, C. Pelckmans, C. J. Smeets, D. Lanssens, H. D. Cannière, V. Storms, I. M. Thijs, P. M. Vandervoort, “Clinical validation of heart rate apps: mixed-methods evaluation study,” JMIR Mhealth Uhealth, vol. 5, no. 8, Aug. 2017.
[10] J. Dijk, and B. van Loon, “Scanning our past from the Netherlands: the electrocardiogram centennial: Willem Einthoven (1860–1927),” Proceedings of the IEEE, vol. 94, no. 12, pp. 2182–2185, Dec. 2006.
[11] National Heart, Lung, and Blood Institute, “Understanding the heart’s electrical system and EKG results,” [online] Available: https://www.nhlbi.nih.gov/node/4303
[12] DailyCare BioMedical Inc., InstantCheck, [online] Available: http://www.dcbiomed.com/InstantCheck:V4.0.html
[13] OMRON Corporation, OMRON Healthcare HCG-801, [online] Available: https://www.omron-healthcare.com/en/products/electrocardiograph
[14] C. Li, V. M. Lubecke, O. Boric-Lubecke and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans Microw Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013.
[15] C. Li, Z. Peng, T.-Y. Huang, T. Fan, F.-K. Wang, T.-S. Horng, JM. Munoz-Ferreras, R. Gómez-García, L. Ran and J. Lin, “A review on recent progress of portable short-range noncontact microwave radar systems,” IEEE Trans Microw Theory Techn., vol. 65, no. 5, pp. 1692-1706, May 2017.
[16] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Techn., vol. 58, pp. 4112–4120, Dec. 2010.
[17] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTTS Int. Microw. Symp., Anaheim, CA, 2010, pp. 768-771.
[18] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li and C.-C. Chen, “Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3577-3587, Dec. 2011.
[19] F.-K. Wang, Y.-R. Chou, Y.-C. Chiu, and T.-S. Horng, “Chest-worn health monitor based on a bistatic self-injection-locked radar,” IEEE Trans. Biomed. Eng., vol. 62, no. 12, pp. 2931–2940, Dec. 2015.
[20] F.-K. Wang, M.-C. Tang, S.-C. Su, and T.-S. Horng, “Wrist pulse rate monitor using self-injection-locked radar technology,” Biosensors, vol. 6, pp. 54–65, Oct. 2016.
[21] B.-Y. Kim, Y. Hong, Y.-J. An, S.-G. Kim, H.-J. Lee, S.-W. Kim, S.-B. Hong, G.-H. Yun, and J.-G. Yook, “A proximity coupling RF sensor for wrist pulse detection based on injection-locked PLL,” IEEE Trans. Microw. Theory Techn., vol. 64, pp. 1667–1676, May 2016.
[22] C.-H. Tseng, J.-K. Huang, L.-T. Yu, and C.-L. Chang, “A cost-effective wearable vital-sign sensor with self-oscillating active antenna based on envelope detection technique,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, USA, Jun. 2017.
[23] C.-H. Tseng, L.-T. Yu, J.-K. Huang and C.-L. Chang, “A wearable self-injection-locked sensor with active integrated antenna and differentiator-based envelope detector for vital-sign detection from chest wall and wrist,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2511-2521, May 2018.
[24] C.-H. Tseng and L.-T. Yu, “Self-injection-locked radar sensor with active-integrated-antenna and differentiator-based demodulator for noncontact vital sign detection,” in Proc. IEEE Topical Conf. Sensors and Sensor Networks (WiSNet), Anaheim, CA, USA, Jan. 2018.
[25] A. Derneryd, “Analysis of the microstrip disk antenna element,” IEEE Trans. Antennas Propag., vol. 27, no. 5, pp. 660-664, Sep. 1979.
[26] S. D. A. Fonseca and A. Giarola, “Microstrip disk antennas, Part I: Efficiency of space wave launching,” IEEE Trans. Antennas Propag., vol. 32, no. 6, pp. 561-567, Jun. 1984.
[27] S. D. A. Fonseca and A. Giarola, “Microstrip disk antennas, Part II: The problem of surface wave radiation by dielectric truncation,” IEEE Trans. Antennas Propag., vol. 32, no. 6, pp. 568-573, June 1984.
[28] C. A. Balanis, Antenna Theory: Analysis and Design. New York: Wiley, 1982.
[29] Infineon Technologies, BFP405F Low Noise Silicon Bipolar RF Transistor, [online] Available: https://www.infineon.com/dgdl/Infineon-B
FP405F-DS-v01_01-en.pdf?fileId=db3a30431400ef6801142770426c076c
[30] Behzad Razavi, RF Microelectronics, 2nd Ed., Prentice Hall Press, Upper Saddle River, NJ, 2011.
[31] C.-H. Tseng and C.-L. Chang, “Design of low phase-noise microwave oscillator and wideband VCO based on microstrip combline bandpass filters,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3151-3160, Oct. 2012.
[32] P.-Y. Lyu, C.-H. Yang, S.-F. Chang, Y.-M. Chen, and C.-C. Chang, “A standing-wave enevelope detection technique for breath and heartbeat rates detection,” IEEE MTT-S IMWS-Bio, pp. 47-48, Oct. 2015.
[33] C.-W. Hsue, L.-C. Tsai, and K.-L. Chen, “Implementation of first-order and second-order microwave differentiators,” IEEE Trans. Microw. Theory Techn., vol. 52, pp. 1443–1448, May 2004.
[34] Linear Technology, RF power detector LTC5508 Data Sheet, [online] Available: http://cds.linear.com/docs/en/datasheet/5508fa.pdf
[35] Microchip Technology, MCP73831/2 Miniature Single-Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management Controllers, [online] Available: http://ww1.microchip.com/downloads/en/DeviceDoc/20001984g.pdf
[36] Torex Semiconductor, ultra-low power low dropout voltage regulator, [online] Available: https://www.torexsemi.com/file/xc6206/XC6206.pdf
[37] Texas Instruments, OPA 2379 RR I/O Operational Amplifier, [online] Available: http://www.ti.com/lit/ds/symlink/opa2379.pdf
[38] Microchip Technology, ATmega328/P 8-bit AVR Microcontrollers, [online] Available: https://www.microchip.com/wwwproducts/en/ATmega328
[39] Future Technology Devices International (FTDI), FT232R USB UART IC, [online] Available: http://www.ftdichip.com/Products/ICs/FT232R.htm
[40] MOS-TECH Semiconductor, MT2301 single P-channel power MOSFET, [online] Available: http://www.mtsemi.com/uploadfile/2015031210284158.pdf
[41] REYAX Technology, RYB070I 2.4GHz Bluetooth low energy module with Integrated antenna, [online] Available: http://reyax.com/products/ryb070i/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top