跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪天心
研究生(外文):Tien-Hsin Wang
論文名稱:改良式低功率參考電壓設計
論文名稱(外文):Improved Low-Power Reference Voltage Circuit Design
指導教授:劉偉行劉偉行引用關係
指導教授(外文):Weih-Sing Liu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:參考電壓溫度係數弱反轉區回授低功率消耗
外文關鍵詞:reference voltagetemperature coefficientweak-inversionfeedbacklow-power consumption
相關次數:
  • 被引用被引用:7
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出四種改良式低功率消耗參考電壓電路。第一種電路混合BJT與MOSFET之正負溫度係數以產生輸出參考電壓;第二種電路是以MOSFET的正負溫度係數特性產生零溫度係數參考電壓;第三種則是產生零溫度係數參考電壓,並回授產生電路所需之偏壓電流的低功率參考電壓電路,第四種則將電路中所有MOSFET都偏壓於弱反轉區。四種電路均利用MOS電晶體偏壓於弱反轉區時具有低功率消耗的特性,並適當組合具有正、負溫度係數之電壓以實現具有零溫度係數的低功率消耗之參考電壓。

本論文除了提供詳細工作原理以外,並使用HSPICE電路模擬軟體以0.35微米製程參數執行佈局前、後模擬以及下線製作;電路供應電壓分別是1.7V與1.8V,溫度變化範圍則是從-20°C遞增至120°C,根據模擬結果顯示,當供應電壓1.7V且使用混合電路,溫度為25°C時,輸出電壓約為448.5mV,輸出電壓變化量為0.57mV,消耗功率為24.18μW,PSRR為-64.9dB,溫度係數約為8.34ppm/°C;而當供應電壓1.8V且使用低功率參考電壓電路,溫度為25°C時,輸出電壓約為657mV,輸出電壓變化量為0.23mV,消耗功率為1.03μW,PSRR為-81dB,溫度係數約為2.5ppm/°C。

電路模擬結果與理論推導相符合,可證實本論文所提出之改良式低功率參考電壓電路的可行性。本論文所提出低功率參考電壓電路可適用於各種類比積體電路。
In this thesis, four improved Low-Power Reference Voltage Circuits have been proposed. The first circuit used the positive and negative temperature coefficients of the BJT and MOSFET, respectively, to generate the required reference voltage. The second circuit used the positive and negative temperature coefficients of the MOSFET to reach the zero-temperature coefficient reference voltage. The third circuit generated the zero-temperature coefficient reference voltage first and then feedback to the bias circuit to provide the necessary bias currents. The last circuit kept all MOSFET in the circuit to be biased in the weak inversion region. In all the proposed circuits, MOS transistors are biased in the weak inversion region to achieve the low-power consumption characteristics. After that, with proper combination of the positive and the negative temperature coefficients of voltage, the low-power consumption with zero-temperature coefficient reference voltage can be realized.

Detailed design principles have been disclosed in this thesis, and the HSPICE simulation program with 0.35-μm process parameters have been used to perform the pre/post-layout simulations. Also the proposed circuits have been taped-out with the same process parameters.
The supply voltages of the proposed circuit are 1.7V and 1.8V, respectively. The temperature ranges from -20°C to 120°C. According to the simulation results, when the supply voltage is 1.7V and the temperature is 25°C, the output voltage of the proposed mixed-mode circuit is 448.5mV, the maximum output voltage variation is 0.57mV, the power dissipation is 24.18μW, the corresponding PSRR is -64.9dB, and the temperature coefficient is 8.34ppm/°C. As the supply voltage is 1.8V and the temperature is 25°C, the output voltage of the proposed low-power reference voltage circuit is 657mV, the maximum output voltage variation is 0.23mV, the power dissipation is 1.03μW, the corresponding PSRR is -81dB, and the temperature coefficient is 2.5ppm/°C.

The simulation and measurement results are consistent with the theoretic analysis which can prove the validity of the proposed circuits. The proposed circuit can be further used in various analog circuit applications.
摘要..........i
Abstract..........ii
誌謝..........iv
目錄..........v
表目錄..........vii
圖目錄..........viii
符號說明..........xi
第一章 緒論..........1
1.1 積體電路發展沿革..........1
1.2 設計流程..........2
1.3 研究方向與重點..........4
1.4 論文架構簡介..........4
第二章 能隙參考電壓回顧..........5
2.1 參考電壓介紹..........5
2.2 參考電壓電路架構與工作原理..........5
2.2.1 二極體穩壓電路..........6
2.2.2 BJT參考電壓電路..........8
2.2.3 弱反轉區與MOSFET參考電壓電路..........13
2.3 簡易電流源分析..........17
第三章 混合式參考電壓設計..........19
3.1 混合式參考電壓電路..........19
3.2 電路工作原理..........20
3.3 電路佈局前模擬結果..........22
第四章 低功率參考電壓設計..........24
4.1 低功率參考電壓電路..........24
4.2 第一種改良式參考電壓電路..........24
4.2.1 電路工作原理..........25
4.2.2 電路佈局前模擬結果..........27
4.3 第二種改良式參考電壓電路..........29
4.3.1 電路工作原理..........29
4.3.2 電路佈局前模擬結果..........30
4.4 第三種改良式參考電壓電路..........31
4.4.1 電路工作原理..........31
4.4.2 電路佈局前模擬結果..........32
第五章 模擬與量測結果..........35
5.1 晶片設計流程..........35
5.2 電路模擬結果..........38
5.2.1 混合式參考電壓電路..........38
5.2.2 第一種改良式參考電壓電路..........42
5.2.3 第二種改良式參考電壓電路..........46
5.2.4 第三種改良式參考電壓電路..........50
5.3 電路晶片實現與晶片量測結果..........54
5.3.1 混合式參考電壓電路..........54
5.3.2 改良式低功率參考電壓電路..........58
第六章 結論..........66
參考文獻..........67
Extended Abstract..........70
簡歷(CV)..........74
[1]Neil H.E Weste, David Harris,柯鴻禧、黃琪聰(譯),“COMS積體電路設計概論”,台灣培生教育出版股份有限公司,2007。
[2]謝永瑞,“VLSI概論(修訂四版)”,全華科技圖書股份有限公司,2008。
[3]高德遠、康繼昌,“VLSI-系統和電路的設計原理”,儒林圖書有限公司,1992。
[4]D. F. Hilbiber, “A New Developments in IC Voltage Regulators”, IEEE International Solid-State Circuits Conference, vol. VII, pp. 32-33, Feb. 1964.
[5]R. J. Widlar, “New Developments in IC Voltage Regulators”, IEEE International Solid-State Circuits Conference, vol. XIII, pp. 158-159, Feb. 1970.
[6]K. R. Francisco and J. A. Hora , “Very Low Bandgap Voltage Reference with High PSRR Enhancement Stage Implemented in 90nm CMOS Process Technology for LDO Application”, 2012 IEEE International Conference on Electronics Design Systems and Applications (ICEDSA), pp. 216-220, 2012.
[7]Zhang Shuo, Wang Zongmin, Zhou Liang, Feng Wenxiao and Ding Yang, “A high-PSRR bandgap voltage reference with temperature curvature compensation used for pipeline ADC”, 2013 IEEE International Conference of Electron Devices and Solid-Stage Circuit (EDSSC), pp. 1-2, 2013.
[8]K. E. Kuijk, “A Precision Reference Voltage Source” IEEE International Solid-State Circuits Conference, vol. 8, pp. 222-226, June 1973.
[9]廖家正,“CMOS參考電壓設計”,國立虎尾科技大學電子工程系研究所碩士論文,2013年,7月。
[10]Wei-Bin Yang, Horng-Yuan Shih , Yu-Yao Lin, Ming-Hao Hong, Chi-Hsiung Wang, and Yu-Lung Lo, “A 1.8-V 4.36-ppm/°C-TC bandgap reference with temperature variation calibration”, 2013 International SoC Design Conference, pp. 103-106, 2013.
[11]Min Tan, Fan Liu, and Fei Xiang, “A novel sub-1-V bandgap reference in 0.18µm CMOS technology”, 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification, pp. 180-183, 2011.
[12]E. K. F. Lee, “A low voltage CMOS bandgap reference without using an opamp” , 2009 IEEE International Symposium on Circuits and Systems, pp. 2533-2536, 2009.
[13]P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design”, Qxford University Press, Second Edition, 2002.
[14]陳郡豪, “工作於次臨界區本體推動之低電壓低電流微型運算放大器”,國立聯合大學電子工程研究所碩士論文,2006。
[15]施家豪, “低功率參考電壓設計”,國立虎尾科技大學電子工程研究所碩士論文,2013年,7月。
[16]Y. P. Tsividis and R. W. Ulmer, “A CMOS voltage reference”, IEEE J. Solid-State Circuits, vol. SC-13, pp. 774-778, Dec. 1978.
[17]G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutrì, “A Low-Voltage Low-Power Voltage Reference Based on Subthreshold MOSFETs”, IEEE Journal of Solid State Circuits, vol. 38, No.1, pp. 151-154, Jan. 2003.
[18]Chia-Wei Chang, Tien-Yu Lo, Chia-Min Chen, Kuo-Hsi Wu, and Chung-Chih Hung, “A Low-Power CMOS Voltage Reference Circuit Based On Subthreshold Operation”, 2007 IEEE International Symposium on Circuits and Systems, pp. 3844-3847, 2007.
[19]M. H. Cheng, and Z.W. Wu, “Low-power low-voltage reference using peaking current mirror circuit”, ELECTRONICS LETTERS, vol. 41, No. 10, pp. 572-573, May, 2005.
[20]P. R. Gray, P. J. Hurst, H. Lewis, and R. G. Meter, “Analysis and design of analog integrated circuits”, New York, John Wiley & Sons, Inc. 4th edition, 2001.
[21]F. Salazar, M. Pacheco, and Marley Vellasco, “Very-Low Power Analog Cells in CMOS”, Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 328-331, Aug. 2000.
[22]Jianping Wang, Xinquan Lai, Yushan Li, Jie Zhang, and Xiaofeng Guo, “A novel low-voltage low-power CMOS voltage reference based on subthreshold MOSFETs”, 2005 6th International Conference On ASIC, vol. 1, pp. 369-373, 2005.
[23]Jun He, Degang Chen, and R. Geiger, “Systematic characterization of subthreshold-mosfets-based voltage references for ultra low power low voltage applications”, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, pp. 280-283, 2010.
[24]S. Ramasamy, B. Venkataramani, P. Meenatchisundaram, “A low power CMOS voltage reference circuit with subthreshold MOSFETs”, 2008 International Conference on Electronic Design, pp. 1-6, 2008.
[25]Yilei Li, Yu Wang, Na Yan, Xi Tan, and Hao Min, “A subthreshold MOSFET bandgap reference with ultra-low power supply voltage”, 2011 IEEE 9th International Conference on ASIC, pp. 862-865, 2011.
[26]O. E. Mattia, H. Klimach, and S. Bampi “0.9 V, 5 nW, 9 ppm/oC resistorless sub-bandgap Voltage reference in 0.18μm CMOS”, 2014 IEEE 5th Latin American Symposium on Circuits and Systems, pp. 1-4, 2014.
[27]I. Fakharyan and M. Ehsanian “A sub-1V nanowatt CMOS bandgap voltage reference with temperature coefficient of 13ppm/°C”, 2015 23rd Iranian Conference on Electrical Engineering, pp. 1129-1132, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊