1.魏志平、董和昇,電子商務理論與實務,華泰出版社,第147-184 頁,民國89年。
2.葉建華,數位圖書館內容與知識管理之研究,國立臺灣大學資訊工程學研究所,博士論文,民國88年。3.陳慶瑄,學習社群對電子圖書館個人化服務之影響,國立中正大學資訊管理學系,碩士論文,民國89年。4.孫冠華,圖書館新書推薦之個人化服務方法,國立中山大學資訊管理研究所,碩士論文,民國89年。5.吳安琪,利用資料探勘的技術及統計的方法增強圖書館的經營與服務,國立交通大學資訊科學系,碩士論文,民國90年。6.洪志淵,圖書流通記錄之一般化相關規則找尋之研究,國立中山大學資訊管理學系研究所,碩士論文,民國90年。7.張苑菁,以模糊理論建構之圖書推薦系統,淡江大學資訊工程研究所,碩士論文,民國90年。
8.戴玉旻,圖書館借閱記錄探勘系統,國立交通大學資訊科學系研究所,碩士論文,民國90年。9.熊文江,文獻數位圖書館推薦技術之研究,國立中山大學資訊管理研究所,碩士論文,民國90年。10.王毓菁,圖書館閱覽者群組潛在特徵探勘資訊系統,華梵大學工業管理學系研究所,碩士論文,民國91年。11.Fayyad, U. M., “Advances in Knowledge Discovery and Data Mining,” Boston:MIS Press, 1996.
12.Fayyad, U. M., et al., “The KDD Process for Extraction Useful Knowledge from Volumes of Data,” Communication of the ACM, November 1996.
13.Fayyad, U. M., Shapiro, G. P., Smyth, P. and Uthurusamy, R. “Advances in Knowledge Discovery and Data Mining,” Califonia: AAA/MIT Press, 1996.
14.Chen, M. S., Han, J. and Yu, P. S., “Data Mining: An Overview from a Database Perspectiv, ” IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 6, 1996, pp. 866-883.
15.Agrawal, R., Imielinski, T. and Swami, A., “Database Mining: a Performance Perspective,” IEEE Tran. Knowledge and Data Engineering, Vol. 5, No. 6, 1993, pp. 914-925.
16.Agrawal, R. and Srikant, R., “Fast Algorithms for Mining Association Rules, ”Proceedings of the 20th International Conference on Very Large Databases, Santiago. Chile, September, 1994, pp. 487-499.
17.Srikant, R. and Agrawal, R., “Mining Generalized Association Rules,” Proceedings of the 21th International Conference on Very Large Data Bases, 1995, pp. 407-419.
18.Han, J. and Kamber, M., Data Mining Concepts and Techniques, Morgankaufmann Publishers An Imprint of Academic Press, 2001, pp. 225-354.
19.Sabharwal, C. L., Hacke, K. R. and St. Clair, D. C., “Formation of Clusters and Resolution of Ordinal Attributes in ID3 Classification Trees, ” Proceedings of ACM/SIGAPP Symposium on Applied Computing: Technological Challenges of the 1990’s, 1992, pp. 590-597.
20.Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning, Vol.3, 1989, pp. 261-283.
21.Rich, E. and Knight, K.,Learning in Neural Network, 2nd Ed., McGraw-Hill,New York, 1991.
22.Kaufman, L. and Rousseeuw,P. J., Finding Groups is Data: an Introduction toCluster Analysis, John Wiley & Sons, 1990.
23.Ng, R. T. and Han, J., Efficiecnt and Effective Clustering Methods for SpatialData Mining, Proceedings of the 20th International Conference on Very LargeData Bases, 1994, pp. 144-155.
24.Dubes, R. C. and Jain, A. K., Algorithms for Clustering Data, Prentice Hall,1988.
25.Alsabti, K., Ranka, S. and Singh, V., “An Efficient K-Means ClusteringAlgorithm,” PPS/SPDP Workshop on High Performance Data Mining, 1997.
26.Agrawal, R. and Srikant, R., “Mining Sequential Patterns,” Proceedings of theInternational Conference on Data Engineering (ICDE), 1995.
27.Srikant, R. and Agrawal, R., “Mining Sequential Patterns: Generalizations andPerformance Improvements,” Proceedings of the Fifth International Conference onExtending Database Technology (EDBT), 1996.