|
[B] J. Bourgain.(1998), Re nement of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., no. 8, [C1] C. Fe erman.(1970), Inequalities for strongly singular convolution operators, Acta Math. 124, 9-36. [C2] M. Chae, Y. Cho, and S. Lee.(2010), Mixed norm estimates of Schrodinger waves and their applications, Comm. PDE, 35, no. 5, 906-943. [D1] Dym, H. and McKean, H. P.(1972), Fourier series and integrals A.P, New York. 253-283. [D2] J.M. Delort.(2001), Existence globale et comportement asymptotique pour l' equation de Klein-Gordon quasi lin eaire donn ees petites en dimension 1, Ann. Sci. Ecole Norm. Sup. no. 4, 34, 1V61. [D3] R. Danchin.(2005), Fourier analysis methods for PDEs, Lecture Notes 14. [D4] Delort, Jean-Marc.(2006), Existence globale et comportement asymptotique pour l'equation de KleinVGordon quasi lineaire a donnees petites en dimension 1 Ann. Scient. Ec. Norm. Sup.,4eserie, t. 39, p. 335 - 345. [E] Evans, C.L.(1998), Partial Di erential Equations, Graduate Studies in Mathematics, Vol. 19, GSM/19. [F] M. Flato, J.C.H. Simon and E. Ta in.(1997), The Maxwell-Dirac equations : the Cauchy problem, asymptotic completeness and the infrared problem, Memoirs of the AMS 128 ,No. 606(x+312 pages). [G] Greiner, W.(1990), Relativistic Quantum Mechanics, Springer-Verlag. [H1] L. Hormander.(1987), The lifespan of classical solutions of nonlinear hyperbolic equations, in Lecture notes in Math, Vol. 1256 , Springer, (214-280). [H2] L. Hormander.(1997), Lectures on Nonlinear hyperbolic di erential equations, Springer Verlag. [K1] T. Kato.(1983), On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8, pp. 93-128. [K2] S. Klainerman.(1985), Global exsitence of small amplitude solutions to nonlinear Klein-Gordon equations in four space dimensions, Comm. Pure Appl. Math. 38 631- 641. [K3] C. Kenig, G. Ponce, L. Vega.(1993), Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, no. 4, 527-620. [K4] S. Keraani, and A. Vargas.(2009), A smoothing property for the L2-critical NLS equations and an application to blowup theory, Ann. Inst. H. Poincare Anal. Non Lineaire 26, no. 3, 745-762. [K5] Soonsik Kwon and Tristan Roy.(2011), Bilinear local smoothing estimate for Airy equation, math.AP. Aug (this version, v2)). [L1] H. Lindblad.(1992), Global solutions of nonlinear wave equations, Comm.Pure Appl. Math. 45 (9), 1063-1096. [L2] H. Moys es Nussenzveig.(1977), The Theory of the Rainbow, Scienti c American 236.4: 116-127. [L3] H. Lindblad and I. Rodnianski.(2003), The weak null condition for Einsteins equations, C. R. Math. Acad. Sci. Paris 336, no. 11, 901V906. [L4] H. Lindblad and A. So er.(2005), A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Di er. Equ. 2, no. 1, 77V89. [L5] Hans Lindblad and Avy So er.(2005), A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys. 73, no. 3, 249V258. [S1] Sakurai, J. J.(1967), Advanced Quantum Mechanics, Addison Wesley. [S2] J.C.H Simon.(1983), A wave operator for a non-linear Klein-Gordon equation, Lett. Math. Phys. 7 , 387V398. [S3] J. Shatah.(1985), Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 685-696. [S4] Strauss, Walter A.(1992), Partial di erential equations: An introduction, Vol. 3. No. 4. New York: Wiley. [S5] Simon, J.C.H and Ta in, E.(1993), The Cauchy problem for nonlinear Klein-Gordon equations, Comm.Math. Phys. 152 433-478. [S6] Stein, Elias M. and Timothy S. Murphy.(1993), Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals,Vol. 3. Princeton University Press. [S7] Serov. Lecturer-Valery.(2011), Fourier transform and distributions, Lecture Notes. [W] Weisskopf, Victor F.(1981), The development of eld theory in the last 50 years, Physics Today 34 : 69.
|