|
[1] D.A. Phipps, Chemistry and biochemistry of trace metals in biological systems, Applied Science Publishers, London, 1981. [2] G.M. Gadd, Microbial control of pollution, 1st ed., Cambridge University Press, Great Britain, 1992. [3] B.J. Alloway, Heavy Metals in Soils, Springer, Netherlands, 2013. [4] 駱尚廉, 環境保護辭典, 茂昌圖書有限公司, 臺北, 1997. [5] M.B. McBride, Environmental chemistry of soils, Oxford University, New York, 1994. [6] J.S. Lee, H.T. Chon, K.W. Kim, Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site, Environ Geochem Health, 27 (2005) 185-191. [7] J. Koropatnick, R.K. Zalups, Effect of non-toxic mercury, zinc or cadmium pretreatment on the capacity of human monocytes to undergo lipopolysaccharide-induced activation, Br J Pharmacol, 120 (1997) 797-806. [8] J. Borak, H.D. Hosgood, Seafood arsenic: implications for human risk assessment, Regul Toxicol Pharmacol, 47 (2007) 204-212. [9] A. Ozturk, Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis, Journal of hazardous materials, 147 (2007) 518-523. [10] B. Hrabac, Z. Rimpapa, M. Stranjak, G. Colic, The effects of chromium on human health, Arh Hig Rada Toksikol, 41 (1990) 233-239. [11] I. Gaballah, G. Kilbertus, Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks, Journal of Geochemical Exploration, 62 (1998) 241-286. [12] K.S. Low, C.K. Lee, S.C. Liew, Sorption of cadmium and lead from aqueous solutions by spent grain, Process Biochemistry, 36 (2000) 59-64. [13] J.F. Risher, H.E. Murray, G.R. Prince, Organic mercury compounds: human exposure and its relevance to public health, Toxicol Ind Health, 18 (2002) 109-160. [14] A. Boguszewska, K. Pasternak, Mercury-influence on biochemical processes of the human organism, Ann Univ Mariae Curie Sklodowska Med, 59 (2004) 524-527. [15] M.J. Mass, Human carcinogenesis by arsenic, Environ Geochem Health, 14 (1992) 49-54. [16] P. Grochowski, Pathogenetic role of nickel in human organism, Protet Stomatol, 40 (1990) 57-65. [17] Z. Shi, Nickel carbonyl: toxicity and human health, The Science of the total environment, 148 (1994) 293-298. [18] P.K. Padmavathiamma, L.Y. Li, Phytoremediation technology: Hyperaccumulation metals in plants, Water Air Soil Poll., 184 (2007) 105-126. [19] F.P. Van der Zee, F.J. Cervantes, Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review, Biotechnol Adv, 27 (2009) 256-277. [20] A. Bafana, T. Chakrabarti, Lateral gene transfer in phylogeny of azoreductase enzyme, Computational Biology and Chemistry, 32 (2008) 191-197. [21] M.H. Vijaykumar, P.A. Vaishampayan, Y.S. Shouche, T.B. Karegoudar, Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1, Enzyme and Microbial Technology, 40 (2007) 204-211. [22] J.M. Molina-Guijarro, J. Perez, J. Munoz-Dorado, F. Guillen, R. Moya, M. Hernandez, M.E. Arias, Detoxification of azo dyes by a novel pH-versatile, salt-resistant laccase from Streptomyces ipomoea, International microbiology : the official journal of the Spanish Society for Microbiology, 12 (2009) 13-21. [23] M.M. Zhang, W.M. Chen, B.Y. Chen, C.T. Chang, C.C. Hsueh, Y. Ding, K.L. Lin, H. Xu, Comparative study on characteristics of azo dye decolorization by indigenous decolorizers, Bioresource technology, 101 (2010) 2651-2656. [24] H. Ben Mansour, R. Mosrati, D. Corroler, K. Ghedira, D. Barillier, L. Chekir, In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2 : Correlation with chemical structures, Environmental Toxicology and Pharmacology, 27 (2009) 231-236. [25] P. Mller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo- 2-hydroxynaphthalene, Mutation Research/Reviews in Mutation Research, 462 (2000) 13-30. [26] P. Nigam, G. Armour, I.M. Banat, D. Singh, R. Marchant, Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues, Bioresource technology, 72 (2000) 219-226. [27] Y. Mu, K. Rabaey, R.A. Rozendal, Z. Yuan, J. Keller, Decolorization of azo dyes in bioelectrochemical systems, Environmental science & technology, 43 (2009) 5137-5143. [28] F. Liu, M. Xu, X. Chen, Y. Yang, H. Wang, G. Sun, Novel strategy for tracking the microbial degradation of azo dyes with different polarities in living cells, Environmental science & technology, 49 (2015) 11356-11362. [29] K.A. Doble M., Biotreatment of industrial effluents, Elsevier Butterworth-Heinemann, UK, 2005. [30] P. Rajaguru, K. Kalaiselvi, M. Palanivel, V. Subburam, Biodegradation of azo dyes in a sequential anaerobic–aerobic system, Applied microbiology and biotechnology, 54 (2000) 268-273. [31] J.C.G. Ottow, Bacterial Mechanism of Gley Formation in Artificially Submerged Soil, Nature, 225 (1970) 103-103. [32] D.R. Lovley, T. Ueki, T. Zhang, N.S. Malvankar, P.M. Shrestha, K.A. Flanagan, M. Aklujkar, J.E. Butler, L. Giloteaux, A.E. Rotaru, D.E. Holmes, A.E. Franks, R. Orellana, C. Risso, K.P. Nevin, Geobacter: the microbe electric''s physiology, ecology, and practical applications, Advances in microbial physiology, 59 (2011) 1-100. [33] C.J. Morris, A.C. Black, S.L. Pealing, F.D. Manson, S.K. Chapman, G.A. Reid, D.M. Gibson, F.B. Ward, Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens, The Biochemical journal, 302 ( Pt 2) (1994) 587-593. [34] C.S. Giometti, Tale of two metal reducers: comparative proteome analysis of Geobacter sulferreducens PCA and Shewanella oneidensis MR-1, Methods of biochemical analysis, 49 (2006) 97-111. [35] S.B. Conners, E.F. Mongodin, M.R. Johnson, C.I. Montero, K.E. Nelson, R.M. Kelly, Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species, FEMS microbiology reviews, 30 (2006) 872-905. [36] M. Vargas, K. Kashefi, E.L. Blunt-Harris, D.R. Lovley, Microbiological evidence for Fe(III) reduction on early Earth, Nature, 395 (1998) 65-67. [37] K. Kashefi, D.E. Holmes, A.-L. Reysenbach, D.R. Lovley, Use of Fe(III) as an Electron Acceptor To Recover Previously Uncultured Hyperthermophiles: Isolation and Characterization of Geothermobacterium ferrireducens gen. nov., sp. nov, Applied and environmental microbiology, 68 (2002) 1735-1742. [38] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Extracellular electron transfer via microbial nanowires, Nature, 435 (2005) 1098-1101. [39] M.Y. El-Naggar, G. Wanger, K.M. Leung, T.D. Yuzvinsky, G. Southam, J. Yang, W.M. Lau, K.H. Nealson, Y.A. Gorby, Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1, Proceedings of the National Academy of Sciences of the United States of America, 107 (2010) 18127-18131. [40] L. Fairbrother, B. Etschmann, J. Brugger, J. Shapter, G. Southam, F. Reith, Biomineralization of gold in biofilms of Cupriavidus metallidurans, Environmental science & technology, 47 (2013) 2628-2635. [41] S. Pirbadian, S.E. Barchinger, K.M. Leung, H.S. Byun, Y. Jangir, R.A. Bouhenni, S.B. Reed, M.F. Romine, D.A. Saffarini, L. Shi, Y.A. Gorby, J.H. Golbeck, M.Y. El-Naggar, Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, Proceedings of the National Academy of Sciences of the United States of America, 111 (2014) 12883-12888. [42] M. Gorgel, J.J. Ulstrup, A. Boggild, N.C. Jones, S.V. Hoffmann, P. Nissen, T. Boesen, High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis, BMC Struct Biol, 15 (2015) 4. [43] M.T. MacDonell, R.R. Colwell, Nuclease S1 analysis of eubacterial 5S rRNA secondary structure, Journal of molecular evolution, 22 (1985) 237-242. [44] D.A. Rodionov, C. Yang, X. Li, I.A. Rodionova, Y. Wang, A.Y. Obraztsova, O.P. Zagnitko, R. Overbeek, M.F. Romine, S. Reed, J.K. Fredrickson, K.H. Nealson, A.L. Osterman, Genomic encyclopedia of sugar utilization pathways in the Shewanella genus, BMC genomics, 11 (2010) 494. [45] C.R. Myers, K.H. Nealson, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science, 240 (1988) 1319-1321. [46] C.R. Myers, K.H. Nealson, Microbial reduction of manganese oxides: Interactions with iron and sulfur, Geochimica et Cosmochimica Acta, 52 (1988) 2727-2732. [47] C.R. Myers, K.H. Nealson, Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1, Journal of bacteriology, 172 (1990) 6232-6238. [48] K. Venkateswaran, M.E. Dollhopf, R. Aller, E. Stackebrandt, K.H. Nealson, Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds, International journal of systematic bacteriology, 48 Pt 3 (1998) 965-972. [49] K. Venkateswaran, D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarini, B.J. MacGregor, D.B. Ringelberg, D.C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, K.H. Nealson, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov, International journal of systematic bacteriology, 49 Pt 2 (1999) 705-724. [50] J.F. Heidelberg, I.T. Paulsen, K.E. Nelson, E.J. Gaidos, W.C. Nelson, T.D. Read, J.A. Eisen, R. Seshadri, N. Ward, B. Methe, R.A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R.T. DeBoy, R.J. Dodson, A.S. Durkin, D.H. Haft, J.F. Kolonay, R. Madupu, J.D. Peterson, L.A. Umayam, O. White, A.M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T.R. Utterback, L.A. McDonald, T.V. Feldblyum, H.O. Smith, J.C. Venter, K.H. Nealson, C.M. Fraser, Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis, Nature biotechnology, 20 (2002) 1118-1123. [51] E. Agency, Reporting the Evidence : Dealing with contaminated land in England and Wales, in, Environment Agency (England and Wales), UK, 2009. [52] H. Hussein, R. Krull, S.I. Abou El-Ela, D.C. Hempel, Interaction of the different heavy metal ions with immobilized bacterial culture degrading xenobiotic wastewater compound, in: Proceedings of the Second International Water Association World Water Conference, Berlin,German, 2001, pp. 15-19. [53] Y. Gorby, J. McLean, A. Korenevsky, K. Rosso, M.Y. El-Naggar, T.J. Beveridge, Redox-reactive membrane vesicles produced by Shewanella, Geobiology, 6 (2008) 232-241. [54] M.M. Urrutia, E.E. Roden, J.K. Fredrickson, J.M. Zachara, Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron‐reducing bacterium Shewanella alga, Geomicrobiology Journal, 15 (1998) 269-291. [55] W. De Windt, N. Boon, S.D. Siciliano, W. Verstraete, Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1, Environmental microbiology, 5 (2003) 1192-1202. [56] M.J. Marshall, A.S. Beliaev, A.C. Dohnalkova, D.W. Kennedy, L. Shi, Z. Wang, M.I. Boyanov, B. Lai, K.M. Kemner, J.S. McLean, S.B. Reed, D.E. Culley, V.L. Bailey, C.J. Simonson, D.A. Saffarini, M.F. Romine, J.M. Zachara, J.K. Fredrickson, c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis, PLoS biology, 4 (2006) e268. [57] R.K. Sani, B.M. Peyton, A. Dohnalkova, Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors, Water research, 42 (2008) 2993-3002. [58] S.P. Ravindranath, K.L. Henne, D.K. Thompson, J. Irudayaraj, Surface-enhanced Raman imaging of intracellular bioreduction of chromate in Shewanella oneidensis, PloS one, 6 (2011) e16634. [59] S. Das, J. Mishra, S.K. Das, S. Pandey, D.S. Rao, A. Chakraborty, M. Sudarshan, N. Das, H. Thatoi, Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil, Chemosphere, 96 (2014) 112-121. [60] R. Campesi, F. Cuevas, R. Gadiou, E. Leroy, M. Hirscher, C. Vix-Guterl, M. Latroche, Hydrogen storage properties of Pd nanoparticle/carbon template composites, Carbon, 46 (2008) 206-214. [61] H. Wang, N. Law, G. Pearson, B.E. van Dongen, R.M. Jarvis, R. Goodacre, J.R. Lloyd, Impact of silver(I) on the metabolism of Shewanella oneidensis, Journal of bacteriology, 192 (2010) 1143-1150. [62] T. Ogi, R. Honda, K. Tamaoki, N. Saitoh, Y. Konishi, Direct room-temperature synthesis of a highly dispersed Pd nanoparticle catalyst and its electrical properties in a fuel cell, Powder Technology, 205 (2011) 143-148. [63] X. Xiao, X.B. Ma, H. Yuan, P.C. Liu, Y.B. Lei, H. Xu, D.L. Du, J.F. Sun, Y.J. Feng, Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1, Journal of hazardous materials, 288 (2015) 134-139. [64] W.D. Windt, P. Aelterman, W. Verstraete, Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls, Environmental microbiology, 7 (2005) 314-325. [65] M. Xu, J. Guo, G. Zeng, X. Zhong, G. Sun, Decolorization of anthraquinone dye by Shewanella decolorationis S12, Applied microbiology and biotechnology, 71 (2006) 246-251. [66] H.K. Zhang, H. Lu, J. Wang, G.F. Liu, J.T. Zhou, Accelerating effect of bio-reduced graphene oxide on decolorization of Acid Red 18 by Shewanella algae, Applied biochemistry and biotechnology, 174 (2014) 602-611. [67] M. Imran, M. Arshad, F. Negm, A. Khalid, B. Shaharoona, S. Hussain, S. Mahmood Nadeem, D.E. Crowley, Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4, Ecotoxicology and environmental safety, 124 (2015) 42-49. [68] M.D. Chengalroyen, E.R. Dabbs, The microbial degradation of azo dyes: minireview, World journal of microbiology & biotechnology, 29 (2013) 389-399. [69] C.H. Chen, C.F. Chang, C.H. Ho, T.L. Tsai, S.M. Liu, Biodegradation of crystal violet by a Shewanella sp. NTOU1, Chemosphere, 72 (2008) 1712-1720. [70] J.S. Zhao, D. Manno, C. Beaulieu, L. Paquet, J. Hawari, Shewanella sediminis sp. nov., a novel Na+ requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment, International journal of systematic and evolutionary microbiology, 55 (2005) 1511-1520. [71] J. Huang, G. Ning, F. Li, G.D. Sheng, Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions, Bioresource technology, 180 (2015) 200-206. [72] Z. Chang, M. Lu, K.J. Shon, J.S. Park, Functional expression of Carassius auratus cytochrome P4501A in a novel Shewanella oneidensis expression system and application for the degradation of benzo[a]pyrene, Journal of biotechnology, 179 (2014) 1-7. [73] J. Wang, Y. Zhou, P. Li, H. Lu, R. Jin, G. Liu, Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB, Applied biochemistry and biotechnology, 175 (2015) 3162-3172. [74] S.T. Lohner, A.M. Spormann, Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 368 (2013) 20120326. [75] Y. Liu, X.X. Shang, Z.W. Yi, L. Gu, R.Y. Zeng, Shewanella mangrovi sp. nov., an acetaldehyde-degrading bacterium isolated from mangrove sediment, International journal of systematic and evolutionary microbiology, (2015). [76] I.S. Ng, F. Xu, X. Zhang, C. Ye, Enzymatic exploration of catalase from a nanoparticle producing and biodecolorizing algae Shewanella xiamenensis BC01, Bioresource technology, 184 (2015) 429-435. [77] K.M. Leung, G. Wanger, M.Y. El-Naggar, Y. Gorby, G. Southam, W.M. Lau, J. Yang, Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior, Nano letters, 13 (2013) 2407-2411. [78] M.K. Rice, W.C. Ruder, Creating biological nanomaterials using synthetic biology, Science and Technology of Advanced Materials, 15 (2014) 014401. [79] D.R. Lovley, Microbial fuel cells: novel microbial physiologies and engineering approaches, Curr Opin Biotechnol, 17 (2006) 327-332. [80] S. Iravani, Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects, International Scholarly Research Notices, 2014 (2014) 1-18. [81] Y. Liu, H. Choi, D. Dionysiou, G.V. Lowry, Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron, Chemistry of Materials, 17 (2005) 5315-5322. [82] S. Nam, P.G. Tratnyek, Reduction of azo dyes with zero-valent iron, Water research, 34 (2000) 1837-1845. [83] Z. Jiang, L. Lv, W. Zhang, Q. Du, B. Pan, L. Yang, Q. Zhang, Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups, Water research, 45 (2011) 2191-2198. [84] R. Elbersen, W. Vijselaar, R.M. Tiggelaar, H. Gardeniers, J. Huskens, Fabrication and Doping Methods for Silicon Nano- and Micropillar Arrays for Solar-Cell Applications: A Review, Adv Mater, (2015). [85] R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids and surfaces. B, Biointerfaces, 79 (2010) 5-18. [86] A. Munoz, M. Costa, Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity, Toxicol Appl Pharmacol, 260 (2012) 1-16. [87] Y. Wang, Y. He, Q. Lai, M. Fan, Review of the progress in preparing nano TiO2: an important environmental engineering material, Journal of environmental sciences, 26 (2014) 2139-2177. [88] H. Korbekandi, S. Iravani, S. Abbasi, Production of nanoparticles using organisms, Critical Reviews in Biotechnology, 29 (2009) 279-306. [89] L. Wen, Z. Lin, P. Gu, J. Zhou, B. Yao, G. Chen, J. Fu, Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route, J Nanopart Res, 11 (2009) 279-288. [90] K. Kashefi, J.M. Tor, K.P. Nevin, D.R. Lovley, Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea, Applied and environmental microbiology, 67 (2001) 3275-3279. [91] D. Correa-Llanten, S. Munoz-Ibacache, M. Castro, P. Munoz, J. Blamey, Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica, Microbial cell factories, 12 (2013) 75. [92] B. Nair, T. Pradeep, Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains, Crystal Growth & Design, 2 (2002) 293-298. [93] M.I. Husseiny, M.A. El-Aziz, Y. Badr, M.A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67 (2007) 1003-1006. [94] H.-J. Bai, Z.-M. Zhang, J. Gong, Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides, Biotechnology letters, 28 (2006) 1135-1139. [95] F. Caccavo, Jr., D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz, M.J. McInerney, Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism, Applied and environmental microbiology, 60 (1994) 3752-3759. [96] S.G. Todorova, A.M. Costello, Design of Shewanella-specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland, Environmental microbiology, 8 (2006) 426-432. [97] S. Yamamoto, S. Harayama, PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains, Applied and environmental microbiology, 61 (1995) 1104-1109. [98] J. Wang, L. Zhu, Q. Wang, J. Wang, H. Xie, Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6, PloS one, 9 (2014) e107270. [99] J. Huang, B. Sun, X. Zhang, Shewanella xiamenensis sp. nov., isolated from coastal sea sediment, International journal of systematic and evolutionary microbiology, 60 (2010) 1585-1589. [100] R. Sravan Kumar, T.S. Sasi Jyothsna, C. Sasikala, C.N. Seong, C.H. Lim, S.C. Park, V. Ramana Ch, Shewanella fodinae sp. nov., isolated from a coal mine and from a marine lagoon, International journal of systematic and evolutionary microbiology, 60 (2010) 1649-1654. [101] S.J. Kim, S.J. Park, Y.S. Oh, S.A. Lee, K.S. Shin, D.H. Roh, S.K. Rhee, Shewanella arctica sp. nov., an iron-reducing bacterium isolated from Arctic marine sediment, International journal of systematic and evolutionary microbiology, 62 (2012) 1128-1133. [102] J.S. Buyer, Identification of bacteria from single colonies by fatty acid analysis, Journal of microbiological methods, 48 (2002) 259-265. [103] A.V. Tugarova, A.M. Burov, M.M. Burashnikova, A.A. Kamnev, Gold(III) reduction by the rhizobacterium Azospirillum brasilense with the formation of gold nanoparticles, Microbial ecology, 67 (2014) 155-160. [104] N. Chubar, T. Behrends, P. Van Cappellen, Biosorption of metals (Cu(2+), Zn(2+)) and anions (F(-), H(2)PO(4)(-)) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens, Colloids and surfaces. B, Biointerfaces, 65 (2008) 126-133. [105] H. Aiking, H. Govers, J. van ''t Riet, Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture, Applied and environmental microbiology, 50 (1985) 1262-1267. [106] C.E. Mire, J.A. Tourjee, W.F. O''Brien, K.V. Ramanujachary, G.B. Hecht, Lead Precipitation by Vibrio harveyi: Evidence for Novel Quorum-Sensing Interactions, Applied and environmental microbiology, 70 (2004) 855-864. [107] R.A. Mayer, H.A. Godwin, Preparation of media and buffers with soluble lead, Analytical biochemistry, 356 (2006) 142-144. [108] al-Aoukaty A, Appanna VD, H. J., Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens Atcc-13525 is mediated by the phosphate content of the growth medium, FEMS microbiology letters, 67 (1991) 283-290. [109] H.S. Levinson, I. Mahler, Phosphatase activity and lead resistance in Citrobacter freundii and Staphylococcus aureus, FEMS microbiology letters, 161 (1998) 135-138. [110] C.M. Smeaton, B.J. Fryer, C.G. Weisener, lntracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-Jarosite.pdf, Environ. Sci. Technol, 43 (2009) 8086–8091. [111] H.W. van Veen, T. Abee, G.J. Kortstee, W.N. Konings, A.J. Zehnder, Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment, Journal of Biological Chemistry, 269 (1994) 16212-16216. [112] M. Gorgel, J.J. Ulstrup, A. Boggild, N.C. Jones, S.V. Hoffmann, P. Nissen, T. Boesen, High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis, BMC Struct Biol, 15 (2015) 4. [113] G. Reguera, K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, D.R. Lovley, Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells, Applied and environmental microbiology, 72 (2006) 7345-7348. [114] A. Jarosławiecka, Z. Piotrowska-Seget, Lead resistance in micro-organisms, Microbiology, 160 (2014) 12-25. [115] I.S. Ng, T. Chen, R. Lin, X. Zhang, C. Ni, D. Sun, Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01, Applied microbiology and biotechnology, 98 (2014) 2297-2308. [116] B.Y. Chen, M.M. Zhang, C.T. Chang, Y. Ding, K.L. Lin, C.S. Chiou, C.C. Hsueh, H. Xu, Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri, Bioresource technology, 101 (2010) 4737-4741. [117] P.J. Cai, X. Xiao, Y.R. He, W.W. Li, J. Chu, C. Wu, M.X. He, Z. Zhang, G.P. Sheng, M.H. Lam, F. Xu, H.Q. Yu, Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1, Applied microbiology and biotechnology, 93 (2012) 1769-1776. [118] G. Liu, J. Zhou, J. Wang, X. Wang, R. Jin, H. Lv, Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids, Applied microbiology and biotechnology, 91 (2011) 417-424. [119] S. Le Laz, A. Kpebe, J. Lorquin, M. Brugna, M. Rousset, H2 dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni-Fe] and [Fe-Fe] hydrogenases, Applied microbiology and biotechnology, 98 (2014) 2699-2707. [120] M.L. Free, Appendix G: Standard Half-Cell Potentials, in: Hydrometallurgy, John Wiley & Sons, Inc., 2013, pp. 418-419.
|