中文文獻
[1]衛生福利部. 105年死因記者會新聞稿. 衛生福利部新聞稿. 取自:http://dep.mohw.gov.tw/DOS/cp-3352-33575-113.html
[2]衛生福利部中央健保署. 全民健康保險醫療品質資訊公開網. 取自http://www.nhi.gov.tw/mqinfo/Content.aspx?List=1&Type=DM
[3]衛生福利部中央健保署. 全民健康保險簡介,全民普及納保財務平衡. 取自:http://www.nhi.gov.tw/Content_List.aspx?n=1629DB7B0FB8C3D4&topn=FB01D469347C76A7
[4]中華民國糖尿病學會.全民糖尿病觀測站.取自:http://www.diabetes.org.tw/
[5]廖介銘(2003)。決策樹應用於糖尿病之探勘。碩士論文,華梵大學資訊管理學系碩士班,新北市。[6]徐慧君, 翁慧卿, 林育慈, 陳淑銘, 李佩儒, 李集美, . . . 李洮俊(2004)。糖尿病患介入疾病管理在經濟面、臨床面及滿意度成效評估之初探-以南部某區域醫院糖尿病病患為例。醫務管理期刊, 5(2),頁 222-242。
[7]邱一薰(2005)。類神經網路預測台灣50股價指數之研究。碩士論文,國立彰化師範大學資訊管理學系所,彰化縣。[8]李佩賢, 張弘育, 董淳武, 徐永建, 雷振宙, 張洵浩, . . . 林俊良(2009)。一個容易被忽略的徵兆:微白蛋白尿。內科學誌, 20(4),頁 275-284。
[9]范光中, & 許永河(2010)。台灣人口高齡化的社會衝擊。台灣老年醫學暨老年學雜誌, 5.3,頁 149-168。
[10]李俊宏, & 古清仁(2010)。類神經網路與資料探勘技術在醫療診斷之應用研究。工程科技與教育學刊, 7(1),頁 154-169。
[11]蔡佳玲, 洪新原, & 袁繼銓(2011)。以決策樹模型探討未開立慢性病連續處方之影響因子。資訊管理學報, 18(4),頁 139-164。[12]林渤越(2013)。以全民健康保險資料庫探討國人慢性疾病的現況。碩士論文,國立政治大學統計研究所,台北市。[13]衛生福利部國民健康署(2015)。糖尿病與我。取自:http://tmue.lib.apabi.com/List.asp?lang=big5
[14]楊勝雄(2015)。運用資料探勘技術進行糖尿病前期危險因子分析—以屏東某區域醫院為例。屏東科技大學資訊管理系所。
[15]吳建廷, 程秀蘭, 胡雅涵, 童建學, & 彭子安(2016)。比較三種資料探勘演算法預測類型風溼性關節炎預後之研究。北市醫學雜誌, 13(3),頁 98-110。 英文文獻
[16]A.D.A. Diabetes Basics Diagnosis. from http://www.diabetes.org/diabetes-basics/diagnosis/
[17]A.D.A. Type 2 Diabetes Risk Test. from http://www.diabetes.org/are-you-at-risk/diabetes-risk-test/
[18]Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning.
[19]Fayyad, U., PiatetskyShapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the Acm, 39(11), 27-34.
[20]Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote sensing of Environment, 62(1), 77-89.
[21]Tin Kam, H. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832-844.
[22]Stratton, I. M., Adler, A. I., Neil, H. A., Matthews, D. R., Manley, S. E., Cull, C. A., . . . Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321(7258), 405-412.
[23]Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision Support Systems, 31(1), 127-137.
[24]Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
[25]Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1-2), 1-24.
[26]Lu, J. F. R., & Hsiao, W. C. (2003). Does universal health insurance make health care unaffordable? Lessons from Taiwan. Health Affairs, 22(3), 77-88.
[27]Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
[28]Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
[29]Han, J., Pei, J., & Kamber, M., Data mining: concepts and techniques. 2011: Elsevier.
[30]Tripoliti, E. E., Fotiadis, D. I., & Manis, G. (2012). Automated Diagnosis of Diseases Based on Classification: Dynamic Determination of the Number of Trees in Random Forests Algorithm. IEEE Transactions on Information Technology in Biomedicine, 16(4), 615-622.
[31]Chang, C. H., Jiang, Y. D., Chung, C. H., Ho, L. T., & Chuang, L. M. (2012). National trends in anti-diabetic treatment in Taiwan, 2000-2009. Journal of the Formosan Medical Association, 111(11), 617-624.
[32]Wijaya, R., Prihatmanto, A. S., & Kuspriyanto. (2013, 26-28 Nov. 2013). Preliminary design of estimation heart disease by using machine learning ANN within one year. Paper presented at the 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T).
[33]Aneja, S., & Lal, S. (2014, 11-13 Dec. 2014). Effective asthma disease prediction using naive Bayes — Neural network fusion technique. Paper presented at the 2014 International Conference on Parallel, Distributed and Grid Computing.
[34]WHO. (2016). Diabetes Global Report. from http://www.who.int/diabetes/global-report/en/