|
1.DuPage, M. and J.A. Bluestone, Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol, 2016. 16(3): p. 149-63.
2.Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45.
3.Sakaguchi, S., et al., FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol, 2010. 10(7): p. 490-500.
4.Cools, N., et al., Regulatory T cells and human disease. Clin Dev Immunol, 2007. 2007: p. 89195.
5.Bennett, C.L., et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 2001. 27(1): p. 20-1.
6.Gershon, R.K. and K. Kondo, Infectious immunological tolerance. Immunology, 1971. 21(6): p. 903-14.
7.Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 1151-64.
8.Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003. 4(4): p. 330-6.
9.Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-61.
10.Roncador, G., et al., Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol, 2005. 35(6): p. 1681-91.
11.Liu, W., et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med, 2006. 203(7): p. 1701-11.
12.Seddiki, N., et al., Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med, 2006. 203(7): p. 1693-700.
13.Gavin, M.A., et al., Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A, 2006. 103(17): p. 6659-64.
14.Mazzucchelli, R. and S.K. Durum, Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol, 2007. 7(2): p. 144-54.
15.Hamann, A., et al., Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol, 2000. 30(11): p. 3207-18.
16.Abbas, A.K., et al., Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol, 2013. 14(4): p. 307-8.
17.Shevach, E.M. and A.M. Thornton, tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev, 2014. 259(1): p. 88-102.
18.Nishizuka, Y. and T. Sakakura, Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science, 1969. 166(3906): p. 753-5.
19.Itoh, M., et al., Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol, 1999. 162(9): p. 5317-26.
20.Hsieh, C.S., H.M. Lee, and C.W. Lio, Selection of regulatory T cells in the thymus. Nat Rev Immunol, 2012. 12(3): p. 157-67.
21.Ohkura, N., et al., T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity, 2012. 37(5): p. 785-99.
22.Spits, H., Development of alphabeta T cells in the human thymus. Nat Rev Immunol, 2002. 2(10): p. 760-72.
23.Davidson, T.S., et al., Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol, 2007. 178(7): p. 4022-6.
24.Tran, D.Q., H. Ramsey, and E.M. Shevach, Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood, 2007. 110(8): p. 2983-90.
25.Lu, L., et al., Characterization of protective human CD4CD25 FOXP3 regulatory T cells generated with IL-2, TGF-beta and retinoic acid. PLoS One, 2010. 5(12): p. e15150.
26.Hippen, K.L., et al., Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am J Transplant, 2011. 11(6): p. 1148-57.
27.Vignali, D.A., L.W. Collison, and C.J. Workman, How regulatory T cells work. Nat Rev Immunol, 2008. 8(7): p. 523-32.
28.Schmidt, A., N. Oberle, and P.H. Krammer, Molecular mechanisms of treg-mediated T cell suppression. Front Immunol, 2012. 3: p. 51.
29.Ito, T., et al., Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity, 2008. 28(6): p. 870-80. 30.Jonuleit, H., et al., Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med, 2001. 193(11): p. 1285-94.
31.Hawrylowicz, C.M. and A. O''Garra, Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol, 2005. 5(4): p. 271-83.
32.Annacker, O., et al., Interleukin-10 in the regulation of T cell-induced colitis. J Autoimmun, 2003. 20(4): p. 277-9.
33.Levings, M.K., et al., Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med, 2002. 196(10): p. 1335-46.
34.Fahlen, L., et al., T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med, 2005. 201(5): p. 737-46.
35.Baecher-Allan, C., V. Viglietta, and D.A. Hafler, Inhibition of human CD4(+)CD25(+high) regulatory T cell function. J Immunol, 2002. 169(11): p. 6210-7.
36.Godfrey, W.R., et al., Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood, 2005. 105(2): p. 750-8.
37.Oberle, N., et al., Rapid suppression of cytokine transcription in human CD4+CD25 T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-beta, and various inhibitors of TCR signaling. J Immunol, 2007. 179(6): p. 3578-87.
38.Collison, L.W., et al., The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature, 2007. 450(7169): p. 566-9.
39.Bardel, E., et al., Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol, 2008. 181(10): p. 6898-905.
40.Zhao, D.M., et al., Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood, 2006. 107(10): p. 3925-32.
41.Grossman, W.J., et al., Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood, 2004. 104(9): p. 2840-8.
42.Garin, M.I., et al., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood, 2007. 109(5): p. 2058-65.
43.Strauss, L., C. Bergmann, and T.L. Whiteside, Human circulating CD4+CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol, 2009. 182(3): p. 1469-80.
44.Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998. 188(2): p. 287-96.
45.de la Rosa, M., et al., Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol, 2004. 34(9): p. 2480-8.
46.Tran, D.Q., et al., Analysis of adhesion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function. J Immunol, 2009. 182(5): p. 2929-38.
47.Borsellino, G., et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 2007. 110(4): p. 1225-32.
48.Mandapathil, M., et al., Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods, 2009. 346(1-2): p. 55-63.
49.Sakaguchi, S., et al., Regulatory T cells and immune tolerance. Cell, 2008. 133(5): p. 775-87.
50.Ernst, P.B., J.C. Garrison, and L.F. Thompson, Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol, 2010. 185(4): p. 1993-8.
51.Bopp, T., et al., Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med, 2007. 204(6): p. 1303-10.
52.Klein, M., et al., Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J Immunol, 2012. 188(3): p. 1091-7.
53.Cederbom, L., H. Hall, and F. Ivars, CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol, 2000. 30(6): p. 1538-43.
54.Fallarino, F., et al., Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol, 2003. 4(12): p. 1206-12.
55.Liang, B., et al., Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol, 2008. 180(9): p. 5916-26.
56.Mohr, A., et al., Human FOXP3(+) T regulatory cell heterogeneity. Clin Transl Immunology, 2018. 7(1): p. e1005.
57.Miyara, M., et al., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 2009. 30(6): p. 899-911.
58.Baecher-Allan, C., E. Wolf, and D.A. Hafler, MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol, 2006. 176(8): p. 4622-31.
59.Fuhrman, C.A., et al., Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. J Immunol, 2015. 195(1): p. 145-55.
60.Gu, J., et al., Human CD39(hi) regulatory T cells present stronger stability and function under inflammatory conditions. Cell Mol Immunol, 2017. 14(6): p. 521-528.
61.Campbell, D.J. and M.A. Koch, Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol, 2011. 11(2): p. 119-30.
62.Rubtsov, Y.P., et al., Stability of the regulatory T cell lineage in vivo. Science, 2010. 329(5999): p. 1667-71.
63.Dominguez-Villar, M., C.M. Baecher-Allan, and D.A. Hafler, Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med, 2011. 17(6): p. 673-5.
64.Cretney, E., A. Kallies, and S.L. Nutt, Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol, 2013. 34(2): p. 74-80.
65.Komatsu, N., et al., Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci U S A, 2009. 106(6): p. 1903-8.
66.Hori, S., Developmental plasticity of Foxp3+ regulatory T cells. Curr Opin Immunol, 2010. 22(5): p. 575-82.
67.Sakaguchi, S., et al., The plasticity and stability of regulatory T cells. Nat Rev Immunol, 2013. 13(6): p. 461-7.
68.Hori, S., Lineage stability and phenotypic plasticity of Foxp3(+) regulatory T cells. Immunol Rev, 2014. 259(1): p. 159-72.
69.van Kooten, C. and J. Banchereau, CD40-CD40 ligand. J Leukoc Biol, 2000. 67(1): p. 2-17.
70.Karpusas, M., et al., 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure, 1995. 3(10): p. 1031-9.
71.Grewal, I.S. and R.A. Flavell, CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol, 1998. 16: p. 111-35.
72.Elgueta, R., et al., Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev, 2009. 229(1): p. 152-72.
73.Koguchi, Y., et al., Preformed CD40 ligand exists in secretory lysosomes in effector and memory CD4+ T cells and is quickly expressed on the cell surface in an antigen-specific manner. Blood, 2007. 110(7): p. 2520-7. 74.Schubert, L.A., et al., The human gp39 promoter. Two distinct nuclear factors of activated T cell protein-binding elements contribute independently to transcriptional activation. J Biol Chem, 1995. 270(50): p. 29624-7.
75.Lee, B.O., et al., The biological outcome of CD40 signaling is dependent on the duration of CD40 ligand expression: reciprocal regulation by interleukin (IL)-4 and IL-12. J Exp Med, 2002. 196(5): p. 693-704.
76.Peng, X., et al., IL-12 up-regulates CD40 ligand (CD154) expression on human T cells. J Immunol, 1998. 160(3): p. 1166-72.
77.Fayen, J.D., Multiple cytokines sharing the common receptor gamma chain can induce CD154/CD40 ligand expression by human CD4+ T lymphocytes via a cyclosporin A-resistant pathway. Immunology, 2001. 104(3): p. 299-306.
78.Ma, D.Y. and E.A. Clark, The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol, 2009. 21(5): p. 265-72.
79.Mackey, M.F., R.J. Barth, Jr., and R.J. Noelle, The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol, 1998. 63(4): p. 418-28.
80.Quezada, S.A., et al., CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol, 2004. 22: p. 307-28.
81.Summers deLuca, L. and J.L. Gommerman, Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol, 2012. 12(5): p. 339-51.
82.Lozano, T., et al., Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. J Immunol, 2015. 195(7): p. 3180-9.
83.Koguchi, Y., et al., Preformed CD40L is stored in Th1, Th2, Th17, and T follicular helper cells as well as CD4+ 8- thymocytes and invariant NKT cells but not in Treg cells. PLoS One, 2012. 7(2): p. e31296.
84.Litjens, N.H., K. Boer, and M.G. Betjes, Identification of circulating human antigen-reactive CD4+ FOXP3+ natural regulatory T cells. J Immunol, 2012. 188(3): p. 1083-90.
85.Schoenbrunn, A., et al., A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J Immunol, 2012. 189(12): p. 5985-94.
86.Noyan, F., et al., Isolation of human antigen-specific regulatory T cells with high suppressive function. Eur J Immunol, 2014. 44(9): p. 2592-602.
87.Nowak, A., et al., CD137+CD154- Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Front Immunol, 2018. 9: p. 199.
88.Sharma, M.D., et al., An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity, 2013. 38(5): p. 998-1012.
89.Lee, J.J., et al., Increased prevalence of interleukin-17-producing CD4(+) tumor infiltrating lymphocytes in human oral squamous cell carcinoma. Head Neck, 2011. 33(9): p. 1301-8.
90.Sallusto, F., et al., Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med, 1995. 182(2): p. 389-400.
91.Li, D.Y., et al., Maturation induction of human peripheral blood mononuclear cell-derived dendritic cells. Exp Ther Med, 2012. 4(1): p. 131-134.
92.Morelli, A.E. and A.W. Thomson, Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol, 2007. 7(8): p. 610-21.
93.Gordon, J.R., et al., Regulatory dendritic cells for immunotherapy in immunologic diseases. Front Immunol, 2014. 5: p. 7.
94.Yoo, S. and S.J. Ha, Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications. Immune Netw, 2016. 16(1): p. 52-60.
95.Hubo, M., et al., Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol, 2013. 4: p. 82.
96.Aerts-Toegaert, C., et al., CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol, 2007. 37(3): p. 686-95.
|