|
Bai, D., Y. Jin and Z. Yu, “Flow Regimes in Circulating Fluidized Beds”, Chem. Eng. Technol., 16, 307-313 (1993).
Bai, D. R., Y. Jin, Z. Q. Yu and J. X. Zhu, “The Axial Distribution of the Cross-sectionally Average Voidage in Fast Fluidized Beds”, Powder Technol., 71, 51-58 (1992).
Bakshi, B.R., H. Zhong, P. Jiang and L. S. Fan, “Analysis of Flow in Gas-Liquid Bubble Columns Using Multiresolution Methods”, Trans. Inst. Chem. Eng., 73(A), 608-614 (1995).
Barner, H. E., J. S. Chartier, H. Beisswenger and H. W. Schmidt, “Application of Circulating Fluid Bed Technology to the Combustion of Waste Materials”, Environmental Progress, 4, 125-130 (1985).
Bi, H. T. and J. Zhu, “Static Instability Analysis of Circulating Fluidized Bed and the Concept of High Density Riser”, AIChE J., 39, 1272-1280 (1993).
Bi, H. T. and J. R. Grace, “Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport”, Int. J. Multiph. Flow, 21, 1229-1236 (1995).
Bruce, A. and H. Y. Gao, “Applied Wavelet Analysis with S-Plus”, Springer, New York, U.S.A., pp. 11-67 (1996).
Ellis, N., H. T. Bi, C. J. Lim and J. R. Grace, “Influence of Probe Scale and Analysis Method on Measured Hydrodynamic Properties of Gas-Fluidized Beds”, Chem. Eng. Sci., 59, 1841-1851 (2004).
Geldart, D., “Types of Gas Fluidization”, Powder Technol., 7, 285-292 (1973).
Geldart, D. and M. J. Rhodes, “From Minimum Fluidization to Pneumatic Transport-A Critical Review of the Hydrodynamics”, in “Circulating Fluidized Bed Technology”, P. Basu, Ed., pp. 21-31, Pergamon Press, New York, NY (1986).
Goswami, J. C. and A. K. Chan, “Fundamentals of Wavelets: Theory, Algorithms, and Applications”, pp. 141-265, John Wiley & Sons, New York, NY, USA (1999).
Grace, J. R., “Contacting Modes and Behaviour Classificatuin of Gas-Solid and Other Two-Phase Suspensions”, Can. J. Chem. Eng., 64, 353-363 (1987).
Guo, Q., G. Yue, T. Suda and J. Sato, “Flow Characteristics in a Bubbling Fluidized Bed at Elevated Temperature”, Chem. Eng. Proc., 42, 439-447 (2003).
Hirama, T., H. Takeuchi and T. Chiba, “Regime Classification of Macroscopic Gas-Solid Flow in a Circulating Fluidized Bed Riser”, Powder Technol., 70, 215-222 (1992).
Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in Gas Fluidization Technology, D. Geldart, Ed., pp. 341-414, Wiley, New York, NY, USA, (1986).
Knowlton, T. M. and I. Hirsan, “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, March, pp. 149-156 (1978).
Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U.S.A. (1991).
Leung, L. S. and Wiles J. R., “A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557 (1976).
Lu, X. and H. Li, “Wavelet Analysis of Pressure Fluctuation Signals in a Bubbling Fluidized Bed”, Chem. Eng. J., 75, 113-119 (1999).
Mallat, S., “A Theory for Multiresolution Signal Decomposition: the wavelet representation.”, IEEE Trans. Pattern Analysis and machine intelligence, 11, 674-693 (1989).
Mallat, S., “A Wavelet Tour of Signal Processing”, 2nd edition, pp.163-314, Cambridge University Press, Cambridge, UK (1999).
Namkung, W., S. W. Kim and S. D. Kim, “Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed”, Chem. Eng. J., 72, 245-252 (1999).
Park, S. H., Y. Kang and S. D. Kim, “Wavelet Transform Analysis of Pressure Fluctuation Signals in a Pressurized Bubble Column”, Chem. Eng. Sci., 56, 6259-6265 (2001).
Ren, J., Q. Mao, J. Li and W. Lin, “Wavelet Analysis of Dynamic Behavior in Fluidized Beds”, Chem. Eng. Sci., 56, 981-988 (2001).
Rhodes, M. J. and P. Laussmann, “A Study of the Pressure Balance Around the Loop of a Circulating Fluidized Bed”, Can. J. Chem. Eng. 70, 625-630 (1992).
Schwieger, B., “Fluidized-Bed Boilers Achieve Commercial Status Worldwide”, Power, February, S1-S16 (1985).
Shou, M. C. and L. P. Leu, “Identification of Transition Velcities in Fluidized Beds Using Wavelet Analysis”, J. Chem. Eng. Japan, 38, 409-421 (2005).
Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A Quantitative Definition and Flow Regime Diagram for Fast Fluidization”, Powder Technol., 47, 195-199 (1986).
Weinstein, H., R. A. Graff, M. Meller, and M. J. Shao, “The Influence of the Imposed Pressure Drop Across a Fast Fluidized Bed”, Fluidization IV (D. Kunii and R. Toei, eds.), Engineering Foundation, New York, pp. 299-306 (1983).
Weinstein, H., M. Meller., M. J. Shao and R. J. Parisis, ”The Effect of Particle Density on Holdup in a Fast Fluidized Bed”, AIChE. Symp. Ser., vol. 80, no. 234, 52-59 (1984).
Yang, T. Y. and L. P. Leu, “Statistical and Wavelet Analysis of Pressure Fluctuations on Characterizing the Onset of Turbulent Fluidization”, in “The Ninth Asian Conference on Fluidized-Bed and Three-Phase Reactors”, L. P. Leu and C. S. Chyang, eds., pp. 37-42, Wanli, Taiwan (2004).
Yerushalmi, J., D. H. Turner and A. M. Squires, “The Fast Fluidized Bed”, Ind. Eng. Chem. Prec. Dec. Dev., 15, 47-53 (1976).
Yerushalmi, J. and A. M. Squires, “The Phenomenon of Fast Fluidization”, AIChE. Symp. Ser., vol. 73, no. 161, 44-50 (1977).
Yerushalmi, J. and N. T. Cankurt, “Further Studies of the Regimes of Fluidization”, Powder Technol., 24, 187-205 (1979).
Yerushalmi, J. and A. Avidan, “High-Velocity Fluidization”, in “Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., pp. 225-291, Academic Press, London, GB (1986).
白丁榮、金涌和俞芷青, “循環流態化:(VI)反應器行為及其模式”, 化學反應工程與工藝, 8(3), 302-313 (1992)。
|