跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭信奇
研究生(外文):Hsin-Chi Kuo
論文名稱:利用小波分析壓力擾動訊號來界定B類粒子快速流體化流域
論文名稱(外文):Characterization of Fast Fluidization Regime with Geldart Group B Particles by Wavelet Analysis of Pressure Fluctuation Signals
指導教授:呂理平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:小波
外文關鍵詞:wavelet
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用高7m、內徑0.108m之循環式流體化床,以平均粒徑173μm、密度為2547kg/m3之砂為床體粒子,並以空氣為氣相。利用氣體速度和固體循環量兩個操作變數,來界定循環式流體化床中快速流體化區域的操作範圍,並以壓力探針量測上升床中相對與絕對壓力擾動訊號,與經由小波分析方法得到的小波能量分布圖來討論不同流態的特徵。
在固定固體循環量下,逐漸地提升氣速,由快速流體化流態進入稀相輸送之流域轉變,以床中上、下各段的壓力梯度約相等的氣體流速Uc2作為快速流體化流態與稀相輸送的轉換速度。在固定氣體速度下,逐漸地增加固體循環量,當床內底部壓力梯度不隨固體循環量的增加而改變時,此為快速流體化流態與紊流流體化流態間的臨界固體循環量。
對壓力擾動信號做小波分析後,發現於稀相輸送,主要的能量坐落於D1和D2;於快速流體化,能量以D8與A8為主;於紊流流體化,能量則以D6與D7最重要。且可由E1D+E2D的曲線轉折點找到Uc1值,由E6D+E7D和 E8D+E8A的曲線交點找到Uc2值。但是當量測位置過高 (z=85cm)時,則無法由E6D+E7D和 E8D+E8A的曲線交點找到Uc2值。
The transition velocities Uc1 and Uc2, bounding the turbulent, fast fluidization, and dilute phase convey flow regimes, were investigated by the tranditional and wavelet analysis on instantaneous pressure signals in a circulating fluidized bed (0.108m i.d. × 7m height) for Geldart group B powder (sand; =173μm, =2547kg/m3). The solid mass flow rate was measured by an impact-line solid flow meter and was controlled by a 80.7mm-i.d. L-valve.
From the traditional method, the transition velocity Uc2, discriminated the dilute phase convey and fast fluidization, was determined as the velocity at which the pressure gradients measured from the top (z=435-455cm) and the bottom (z=35-55cm) regions of the riser were almost equal. The transition velocity Uc1, discriminated the fast fluidization and turbulent fluidization, was determined as the velocity at which the maximum pressure gradient at the bottom and the saturation carry capacity of solids (Gs*) were approached.
By means of the multi-resolution analysis of wavelet tramsform, we obtained the wavelet energy distribution profiles of absolute and differential pressure fluctuations in the three flow regimes. In dilute phase convey regime, the energy distribution was dominated by detail signals D1 and D2; in fast fluidization regime, the detail signals D8 and A8 became relative significant; and in turbulent flow regime, the detail signals D6 and D7 played the important role with relative high energy content. In this case, the Uc1 was easily detected by the corresponding solid circulation flux at which a turning point of the energy curve of (E1D+E2D) was found, while the Uc2 was approximately detected by the intersection point of the energy curves of (E6D+E7D) and (E8D+E8A). Furthermore, the Uc1 and Uc2 were also determined at different heights above the distributor (z=35, 45, 55 and 85cm) in the riser. The result showed that no intersection of (E6D+E7D) and (E8D+E8A) was found at the height z=85cm.
中文摘要 I
Abstract II
目錄 IV
圖表索引 VI
一、緒論 - 1 -
1-1. 前言 - 1 -
1-2. 循環式流體化床的應用及發展 - 2 -
1-3. 研究目的 - 7 -
二、文獻回顧 - 8 -
2-1. 由氣泡流體化轉變成快速流體化之情形 - 8 -
2-2. 快速流體化床的流態轉變情形 - 10 -
2-3. 小波分析與信號處理 - 18 -
2-3.1. 小波 (wavelet)轉換與傅立葉 (Fourier)轉換的比較- 18 -
2-3.2. 小波的特點 - 20 -
2-3.3. 小波分析於化工上之應用 - 22 -
三、實驗裝置與步驟 - 24 -
3-1. 循環式流體化床裝置 - 24 -
3-2. 循環式流體化床中快速流體化流域界定之實驗 - 31 -
3-3. 循環式流體化床固體控制元件之操作 - 32 -
3-4. 數據分析 - 35 -
3-4.1. 小波變換的定義 - 35 -
3-4.2. 小波分析函數 - 35 -
3-4.3. 小波的多分辨率分析 (multu-resolution analysis)- 36 -
3-5. 實驗固體粒子性質 - 38 -
四、結果與討論 - 41 -
4-1. 快速流體化區域的界定 - 41 -
4-1.1. 快速流體化區域與稀相輸送區域之間的轉換速度界定- 41 -
4-1.2. 快速流體化區域與紊流流體化區域間的轉換速度界定- 43 -
4-2. 探討床內軸向空隙率分布 - 51 -
4-3. 快速流體化流域的小波分析 - 59 -
4-3.1. 雙點間壓力擾動之小波分析 - 61 -
4-3.1.1. 上升床頂部與底部雙點壓力擾動 - 61 -
4-3.1.2. 分散板上方與下方間雙點壓力擾動 - 68 -
4-3.2. 單點壓力擾動之小波分析 - 73 -
五、結論 - 88 -
六、符號說明 - 90 -
七、參考文獻 - 94 -
八、附錄 - 98 -
附錄A. 衝擊式固體流量計操作原理說明 - 98 -
附錄B. 衝擊式固體流量計校正說明 - 100 -
附錄C. 衝擊式固體流量計校正線 - 101 -
附錄D. Labview數據截取程式 - 102 -
附錄E. S-PLUS程式 - 104 -
Bai, D., Y. Jin and Z. Yu, “Flow Regimes in Circulating Fluidized Beds”, Chem. Eng. Technol., 16, 307-313 (1993).

Bai, D. R., Y. Jin, Z. Q. Yu and J. X. Zhu, “The Axial Distribution of the Cross-sectionally Average Voidage in Fast Fluidized Beds”, Powder Technol., 71, 51-58 (1992).

Bakshi, B.R., H. Zhong, P. Jiang and L. S. Fan, “Analysis of Flow in Gas-Liquid Bubble Columns Using Multiresolution Methods”, Trans. Inst. Chem. Eng., 73(A), 608-614 (1995).

Barner, H. E., J. S. Chartier, H. Beisswenger and H. W. Schmidt, “Application of Circulating Fluid Bed Technology to the Combustion of Waste Materials”, Environmental Progress, 4, 125-130 (1985).

Bi, H. T. and J. Zhu, “Static Instability Analysis of Circulating Fluidized Bed and the Concept of High Density Riser”, AIChE J., 39, 1272-1280 (1993).

Bi, H. T. and J. R. Grace, “Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport”, Int. J. Multiph. Flow, 21, 1229-1236 (1995).

Bruce, A. and H. Y. Gao, “Applied Wavelet Analysis with S-Plus”, Springer, New York, U.S.A., pp. 11-67 (1996).

Ellis, N., H. T. Bi, C. J. Lim and J. R. Grace, “Influence of Probe Scale and Analysis Method on Measured Hydrodynamic Properties of Gas-Fluidized Beds”, Chem. Eng. Sci., 59, 1841-1851 (2004).

Geldart, D., “Types of Gas Fluidization”, Powder Technol., 7, 285-292 (1973).



Geldart, D. and M. J. Rhodes, “From Minimum Fluidization to Pneumatic Transport-A Critical Review of the Hydrodynamics”, in “Circulating Fluidized Bed Technology”, P. Basu, Ed., pp. 21-31, Pergamon Press, New York, NY (1986).

Goswami, J. C. and A. K. Chan, “Fundamentals of Wavelets: Theory, Algorithms, and Applications”, pp. 141-265, John Wiley & Sons, New York, NY, USA (1999).

Grace, J. R., “Contacting Modes and Behaviour Classificatuin of Gas-Solid and Other Two-Phase Suspensions”, Can. J. Chem. Eng., 64, 353-363 (1987).

Guo, Q., G. Yue, T. Suda and J. Sato, “Flow Characteristics in a Bubbling Fluidized Bed at Elevated Temperature”, Chem. Eng. Proc., 42, 439-447 (2003).

Hirama, T., H. Takeuchi and T. Chiba, “Regime Classification of Macroscopic Gas-Solid Flow in a Circulating Fluidized Bed Riser”, Powder Technol., 70, 215-222 (1992).

Knowlton, T. M., “Solid Transfer in Fluidized Systems”, in Gas Fluidization Technology, D. Geldart, Ed., pp. 341-414, Wiley, New York, NY, USA, (1986).

Knowlton, T. M. and I. Hirsan, “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, March, pp. 149-156 (1978).

Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U.S.A. (1991).

Leung, L. S. and Wiles J. R., “A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems”, Ind. Eng. Chem. Proc. Des. Dev., 15, 552-557 (1976).

Lu, X. and H. Li, “Wavelet Analysis of Pressure Fluctuation Signals in a Bubbling Fluidized Bed”, Chem. Eng. J., 75, 113-119 (1999).

Mallat, S., “A Theory for Multiresolution Signal Decomposition: the wavelet representation.”, IEEE Trans. Pattern Analysis and machine intelligence, 11, 674-693 (1989).

Mallat, S., “A Wavelet Tour of Signal Processing”, 2nd edition, pp.163-314, Cambridge University Press, Cambridge, UK (1999).

Namkung, W., S. W. Kim and S. D. Kim, “Flow Regimes and Axial Pressure Profiles in a Circulating Fluidized Bed”, Chem. Eng. J., 72, 245-252 (1999).

Park, S. H., Y. Kang and S. D. Kim, “Wavelet Transform Analysis of Pressure Fluctuation Signals in a Pressurized Bubble Column”, Chem. Eng. Sci., 56, 6259-6265 (2001).

Ren, J., Q. Mao, J. Li and W. Lin, “Wavelet Analysis of Dynamic Behavior in Fluidized Beds”, Chem. Eng. Sci., 56, 981-988 (2001).

Rhodes, M. J. and P. Laussmann, “A Study of the Pressure Balance Around the Loop of a Circulating Fluidized Bed”, Can. J. Chem. Eng. 70, 625-630 (1992).

Schwieger, B., “Fluidized-Bed Boilers Achieve Commercial Status Worldwide”, Power, February, S1-S16 (1985).

Shou, M. C. and L. P. Leu, “Identification of Transition Velcities in Fluidized Beds Using Wavelet Analysis”, J. Chem. Eng. Japan, 38, 409-421 (2005).

Takeuchi, H., T. Hirama, T. Chiba, J. Biswas and L. S. Leung, “A Quantitative Definition and Flow Regime Diagram for Fast Fluidization”, Powder Technol., 47, 195-199 (1986).

Weinstein, H., R. A. Graff, M. Meller, and M. J. Shao, “The Influence of the Imposed Pressure Drop Across a Fast Fluidized Bed”, Fluidization IV (D. Kunii and R. Toei, eds.), Engineering Foundation, New York, pp. 299-306 (1983).

Weinstein, H., M. Meller., M. J. Shao and R. J. Parisis, ”The Effect of Particle Density on Holdup in a Fast Fluidized Bed”, AIChE. Symp. Ser., vol. 80, no. 234, 52-59 (1984).

Yang, T. Y. and L. P. Leu, “Statistical and Wavelet Analysis of Pressure Fluctuations on Characterizing the Onset of Turbulent Fluidization”, in “The Ninth Asian Conference on Fluidized-Bed and Three-Phase Reactors”, L. P. Leu and C. S. Chyang, eds., pp. 37-42, Wanli, Taiwan (2004).

Yerushalmi, J., D. H. Turner and A. M. Squires, “The Fast Fluidized Bed”, Ind. Eng. Chem. Prec. Dec. Dev., 15, 47-53 (1976).

Yerushalmi, J. and A. M. Squires, “The Phenomenon of Fast Fluidization”, AIChE. Symp. Ser., vol. 73, no. 161, 44-50 (1977).

Yerushalmi, J. and N. T. Cankurt, “Further Studies of the Regimes of Fluidization”, Powder Technol., 24, 187-205 (1979).

Yerushalmi, J. and A. Avidan, “High-Velocity Fluidization”, in “Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., pp. 225-291, Academic Press, London, GB (1986).

白丁榮、金涌和俞芷青, “循環流態化:(VI)反應器行為及其模式”, 化學反應工程與工藝, 8(3), 302-313 (1992)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳立驤:〈張載天道論性格之衡定〉,《鵝湖》第二六卷十一期 (2001.05),頁44-53。
2. 柳秀英:〈張載「太虛即氣」詮釋異說研究〉,《美和技術學院學報》第二十一期 (2002年),頁78-93。
3. 高柏園:〈論唐君毅先生對二程理學之理解態度 (下)〉,《鵝湖》第二八卷一二期 (2003年06月),頁15-22。
4. 高柏園:〈論唐君毅先生對二程理學之理解態度 (上)〉,《鵝湖》第二八卷一一期 (2003年05月),頁33-40。
5. 林月惠:〈宋儒對於「仁」的詮釋─以《論語》「觀過,斯知仁矣」為例〉,《鵝湖學誌》第二十六期,2001年06月,頁35-66。
6. 東方朔:〈上達體悟與下學窮理─朱子、南軒仁說之辨所表達的工夫方向〉,《世界中國哲學學報》第六期,2002年01月,頁82-106。
7. 杜保瑞:〈朱熹哲學研究進路〉,《哲學與文化》第卅二卷第七期(2005.07),頁93-109。
8. 范立舟:〈二十世紀中國大陸的宋明理學研究與新課題〉,《中國文哲研究通訊》第十卷第三期(2000.09),頁263-291。
9. 楊儒賓:〈變化氣質、養氣與觀聖賢氣象〉,《漢學研究》第19卷第1期 (2001.06),頁103-135。
10. 楊儒賓:〈論「觀喜怒哀樂未發前氣象」〉,《中國文哲研究通訊》第15卷第3期 (2005.09),頁33-74。
11. 楊儒賓:〈戰後臺灣的朱子學研究〉,《漢學研究通訊》第19卷第4期 (2000.11),頁572-580。
12. 鍾彩鈞:〈二程心性說析論〉,《中國文哲研究集刊》創刊號 (1991.03),頁413-450。
13. 鍾彩鈞:〈二程道德論與工夫論述要〉,《中國文哲研究集刊》第四期 (1994.03),頁441-475。