跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 08:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒秉翰
研究生(外文):Tsou, Ping-Han
論文名稱:原子層沉積三氧化二鋁介電層於砷化銦鎵金氧半電容之電性與化性的研究
論文名稱(外文):Study on Electrical and Chemical Characteristics of Indium Gallium Arsenide Metal-Oxide-Semiconductor Capacitors with Atomic-Layer-Deposited Al2O3 Gate Dielectric
指導教授:簡昭欣
指導教授(外文):Chien, Chao-Hsin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:砷化銦鎵原子層沉積三氧化二鋁
外文關鍵詞:Indium Gallium ArsenideAtomic-Layer-DepositedAluminium oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文初,我們主要研究晶向(100)的砷化銦鎵通道層與三氧化二鋁(原子層沉積,ALD)之間的界面。粗劣的界面和氧化層品質會導致高頻率分散、費米能階釘札及高閘極漏電流。為了要改善界面與閘極氧化層間的品質,不同的熱處理作用在電容上,例如:後金屬化退火(PMA)、氮氫混合氣體退火(FGA)、後沉積退火(PDA)。首先,我們先探討電容經過PMA的處理與FGA處理後的差異。與PMA相比,在聚積區的頻率分散可被FGA有效地降低。另外,我們利用電導法來萃取界面缺陷電荷密度(Dit);在能隙深處(midgap)的缺陷電荷經過FGA後可被輕微地降低,例如:Dit (Et= 0.428 eV)在FGA後降低約22.28%。其後,電容在FGA下與不同PDA的效應也已探討。從量測的數據分析指出電容在PDA溫度500度120秒及FGA下展現最差的電性。此外,越高的PDA溫度,越高的Dit存在於能隙深處。電性之所以劣化的原因,從XPS分析來看為較低的三氧化二砷與五氧化二砷比值(As2O3/As2O5)及砷化物的析出。接著,在我們的實驗中,晶向(100)砷化銦鎵的電性較優於晶向(111)A砷化銦鎵的電性,如較低的頻率分散和較低的Dit。這個結果可能是因為相較於三氧化二鋁和晶向(111)A砷化銦鎵間的界面,有較高的As2O3/As2O5於三氧化二鋁和晶向(100)砷化銦鎵間的界面。
最後,根據TEM影像和EDX分析,自我對準鎳-砷化銦鎵合金之源極/汲極之n型通道金氧半場效電晶體的失敗原因歸因於鎳-砷化銦鎵合金的未形成。其中,最有可能阻礙鎳-砷化銦鎵合金形成的原因為原生氧化層存在於鎳與砷化銦鎵通道層間。

In the beginning of the thesis, we have mainly studied the interface between (100)-oriented In0.53Ga0.47As channel layer and Al2O3 (atomic layer deposition, ALD). Poor interface and oxide qualities may cause high frequency dispersion, Fermi level pinning, and high gate leakage current. In order to improve interface and gate oxide qualities, different thermal treatments are applied to the capacitors, such as post-metallization annealing (PMA), forming gas annealing (FGA), and post deposition annealing (PDA). Firstly, we study the difference between the capacitors treated with PMA and those treated with FAG. Compared to PMA, frequency dispersion in accumulation can be efficiently reduced by FGA. In addition, we utilize the conductance method to extract the interface state density (Dit). The midgap traps can be slightly reduced: for instance, Dit (Et= 0.428 eV) decreases about 22.28% after FGA. Subsequently, the effects of MOSCAPs under different PDA temperature with FGA have also been discussed. It is noted that MOSCAPs under PDA 500 oC for 120 s with FGA show the worst electrical characteristics. Furthermore, higher PDA temperature is, the higher Dit exists close to midgap. The reason for the degradation of electrical characteristics may be lower ratio of As2O3 to As2O5 and the precipitation of arsenide, which is shown in our XPS analysis. Next, in our experiment, the electrical characteristics of In0.53Ga0.47As (100) is better than In0.53Ga0.47As (111)A, such as lower frequency dispersion and lower Dit. This consequence is possibly due to higher amounts of As2O3/As2O5 at the Al2O¬3/In0.53Ga0.47As (100) interface, compared to Al2O¬3/In0.53Ga0.47As (111)A interface.
Eventually, the failure of self-aligned Ni-InGaAs S/D In0.53Ga0.47As n-MOSFETs is attributed to the non-formation of Ni-InGaAs according to the TEM image and EDX analysis. The possible reason that inhibits the formation of Ni-InGaAs may the existence of native oxides between Ni and In0.53Ga¬0.47As channel layer.

Abstract (Chinese) I
Abstract (English) III
Acknowledgement V
Contents VII
Figure Captions IX
Table Captions XIV
Chapter 1 1
1.1 General Background 1
1.2 Motivation 2
1.3 Organization of the Thesis 3
Reference (Chapter 1) 4
Chapter 2 9
2.1 Introduction 9
2.2 Experimental Procedures 11
2.2.1 Al2O3/In0.53Ga0.47As (100) MOSCAPs Pretreated with Trimethylaluminium... 11
2.2.2 Al2O3/In0.53Ga0.47As (111)A MOSCAPs Pretreated with Trimethylaluminium 12
2.3 Electrical Characteristics of ALD-TMA/In0.53Ga0.47As (100) and Interfacial Chemistry 13
2.3.1 C-V Measurements of MOSCAPs w/ or w/o FGA 14
2.3.2 C-V and G-V Measurements of MOSCAPs w/ FGA or PMA 15
2.3.3 Electrical and Chemical Characteristics of MOSCAPs w/ FGA under Various PDA Conditions 18
2.4 Electrical Characteristics of ALD-TMA/In0.53Ga0.47As (111)A and Interfacial Chemistry 20
2.5 Conductance Method 22
2.5.1 Comparison between FGA and PMA 25
2.5.2 MOSCAPs with FGA under Various PDA Conditions 26
2.5.3 Comparison between the orientation of (100) and (111)A 28
2.6 Summary 29
Reference (Chapter 2) 31
Chapter 3 88
3.1 Introduction 88
3.2 Transistor Fabrication 89
3.3 Failure analysis 90
3.4 Summary 92
Reference (Chapter 3) 93
Chapter 4 100
Vita 102

Reference (Chapter 1)
[1] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, p. 21, 2008.
[2] S.H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, S. Takagi, “Self-aligned metal Source/Drain InxGa1-xAs n-MOSFETs using Ni-InGaAs alloy, ” Tech. Dig. Int. Electron Devices Meet., p. 596, 2010.
[3] H.C. Lin, W.E. Wang, G. Brammertz, M. Meuris, M. Heyns, “Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator,” Microelectron. Eng., vol.86, p.1554, 2009.
[4] H. W. Becke, R. Hall, and J. P. White, “Gallium arsenide MOS transistor,” Solid-State Electronics, vol. 8, p. 813, 1965.
[5] B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of gaas,” Applied Physics Letters, vol. 51, p. 2022, 1987.
[6] E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces,” Applied Physics Letters, vol. 51, p. 439, 1987.
[7] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Applied Physics Letters, vol. 68, p. 1099, 1996.
[8] M. Passlack, M. Hong, J. P. Mannaerts, R. L. Opila, S. N. G. Chu, N. Moriya, F. Ren, and J. R. Kwo, “Low Dit thermodynamically stable Ga O3-GaAs in- terfaces: fabrication, characterization, and modeling,” IEEE Transactions on Electron Devices, p. 214, 1997.
[9] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation,” Science, vol. 283, p. 1897, 1999.
[10] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3)/InGaAs Enhancement-Mode n-Channel MOSFET’s,” IEEE Electron Device Lett., vol. 19, p. 309, 1998.
[11] M. Hong, J. N. Baillargeon, J. Kwo, J. P. Mannaerts, and A. Y. Cho, “First demonstration of GaAs CMOS,” Compound Semiconductors, 2000 IEEE International Symposium on, p. 345, 2000.
[12] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “ Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 84, p. 434, 2004.
[13] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric,” Applied Physics Letters, vol. 88, p. 263518, 2006.
[14] Y. Xuan, H. Lin, and P. D. Ye, “Simplified surface preparation for GaAs pas- sivation using atomic-layer-deposited high-k dielectrics,” IEEE Transactions on Electron Devices, vol. 54, p. 1811, Aug 2007.
[15] Y. Xuan, H. Lin, and P. Ye, “Capacitance-voltage characterization of atomic- layer-deposited Al2O3/InGaAs and Al2O3/GaAs Metal-Oxide-Semiconductor structures,” ECS Transactions, vol. 3, p. 59, 2006.
[16] M. Yokoyama, S. H. Kim, R. Zhang, N. Taoka1, Y. Urabe, T. Maeda, H. Takagi, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, “CMOS integration of InGaAs nMOSFETs and Ge pMOSFETs with self-align Ni-based metal S/D using direct wafer bonding,” IEEE Symposium on VLSI Technology, p. 60, 2011.
[17] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, p. 5243, 2001.
[18] A. Dimoulas, A. Toriumi, and S. E. Mohney, “Source and Drain Contacts for Germanium and III-V FETs for Digital Logic,” MRS Bull., vol. 34, p. 522, 2009.
[19] C.L. Hinkle, E.M. Vogel, P.D. Ye, R.M. Wallace, “Interfacial chemistry of oxides InxGa(1-x)As and implications for MOSFET applications,” Current Opinion in Solid State and Materials Science, vol. 15, p. 188, 2011.

Reference (Chapter 2)
[1] M. Yokoyama, R. Iida, S. Kim, N. Taoka, Y. Urabe, H. Takagi, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, “Sub-10-nm extremely thin body InGaAs-on-insulator MOSFETs on Si wafers with ultrathin Al2O3 buried oxide layers,” IEEE Electron Device Lett., vol. 32, p. 1218, 2011.
[2] H.-C. Chin, X. Liu, X. Gong, and Y.-C. Yeo, “Silane and ammonia surface passivation technology for high-mobility In0.53Ga0.47As MOSFETs,” IEEE Trans. Electron Devices, vol. 57, p. 973, 2010.
[3] U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, B. J. Thibeault, A. C. Gossard, M. J. W. Rodwell, B. Shin, E. J. Kim, P. C. McIntyre, B. Yu, Y. Yuan, D. Wang, Y. Taur, P. Asbeck, and Y.-J. Lee,“In0.53Ga0.47As channel MOSFETs with self-aligned InAs source/drain formed by MEE regrowth,” IEEE Electron Device Lett., vol. 30, p. 1128, 2009.
[4] N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampatic, M. Yakimov, Y. Sun, P. Pianetta, C. K. Gaspe, M. B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, “Addressing the gate stack challenge for high mobility InxGa1−xAs channels for NFETs,” in IEDM Tech. Dig., p.1, 2008.
[5] M. D. Pashley, K. W. Haberern, R. M. Feenstra, and P. D. Kirchner, “Different Fermi-level pinning behavior on n- and p-type GaAs(001),” Phys. Rev. B, vol. 48, p. 4612 , 1993.
[6] A. M. Sonnet, C. L. Hinkle, M. N. Jivani, R. A. Chapman, G. P. Pollack, R. M. Wallace, and E. M. Vogel, “Performance enhancement of n-channel inversion type InxGa1-x¬As metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer,” Appl. Phys. Lett., vol. 93, p. 122109 ,2008.
[7] É. O’Connor, B. Brennan, V. Djara, K. Cherkaoui, S. Monaghan, S. B. Newcomb, R. Contreras, M. Milojevic, G. Hughes, M. E. Pemble, R. M. Wallace, and P. K. Hurley, “A systematic study of (NH4)2S passivation (22%, 10%, 5%, or 1%) on the interface properties of the Al2O3/In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers,” J. Appl. Phys., vol. 109, no. 2, p. 024 101-1, 2011.
[8] B. Brennan, M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, G. Hughes, and R. M. Wallace, “Optimisation of the ammonium sulphide (NH4)2S passivation process on In0.53Ga0.47As,” Appl. Surf. Sci., vol. 257, p. 4082, 2011.
[9] É. O’Connor, S. Monaghan, K. Cherkaoui, I. M. Povey, and P. K. Hurley, “Analysis of the minority carrier response of n-type and p-type Au/Ni/Al2O3/In0.53Ga0.47As capacitors following optimized (NH4)2S treatment,” Appl. Phys. Lett., vol. 99, p. 212901-1, 2011.
[10] Yen-Ting Chen, Yanzhen Wang, Fei Xue, Fei Zhou, and Jack C. Lee, “Physical and Electrical Analysis of Post-HfO2 Fluorine Plasma Treatment for the Improvement of In0.53Ga0.47As MOSFETs’ Performance,” IEEE Trans. Electron Devices, vol. 59, p. 139, 2012.
[11] M. Milojevic, R. Contreras-Guerrero, E. O’Connor, B. Brennan, P. K. Hurley, J. Kim, C. L. Hinkle, and R. M. Wallace, “In-situ characterization of Ga2O passivation of In0.53Ga0.47As prior to high-κ dielectric atomic layer deposition,” Appl. Phys. Lett., vol. 99, p. 042904-1, 2011.
[12] F. Zhu, H. Zhao, I. Ok, H. S. Kim, J. Yum, J. C. Lee, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, “Effects of anneal and silicon interface passivation layer thickness on device characteristics of In0.53Ga0.47As metal–oxide–semiconductor field-effect transistors,” Electrochem. Solid State Lett., vol. 12, p. H131, 2009.
[13] A. O’Mahony, S. Monaghan, G. Provenzano, I. M. Povey, M. G. Nolan, É. O’Connor, K. Cherkaoui, S. B. Newcomb, F. Crupi, P. K. Hurley, and M. E. Pemble, “Structural and electrical analysis of the atomic layer deposition of HfO2/n−In0.53Ga0.47As capacitors with and without an Al2O3 interface control layer,” Appl. Phys. Lett., vol. 97, p. 052904-1, 2010.
[14] S. Monaghan, A. O’Mahony, K. Cherkaoui, É. O’Connor, I. M. Povey, M. G. Nolan, D. O’Connell, M. E. Pemble, P. K. Hurley, G. Provenzano, F. Crupi, and S. B. Newcomb, “Electrical analysis of three-stage passivated In0.53Ga0.47As capacitors with varying HfO2 thicknesses and incorporating an Al2O3 interface control layer,” J. Vac Sci. Technol. B, vol. 29, p. 01A807-1, 2011.
[15] Shahrjerdi, D., Rotter, T., Balakrishnan, G., Huffaker, D., Tutuc, E., Banerjee, S.K., “ Fabrication of Self-Aligned Enhancement-Mode In0.53Ga0.47As MOSFETs With TaN/HfO2/AlN Gate Stack,” IEEE Trans. Electron Devices, vol. 29, p. 557, 2008.
[16] S. Barraud, O. Bonno, and M. Casse, “The influence of Coulomb centers located in HfO2/SiO2 gate stacks on the effective electron mobility,” J. Appl. Phys., vol. 104, p. 073725, 2008.
[17] S.M. George, “Atomic Layer Deposition: An Overview”, Chem. Rev., vol. 110, p. 111, 2010.
[18] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., vol. 87, p. 252104-1, 2005.
[19] Cheng-Wei Cheng, John Hennessy, Dimitri Antoniadis, and Eugene A. Fitzgerald, “Self-cleaning and surface recovery with arsine pretreatment in ex situ atomic-layer-deposition of Al2O3 on GaAs,” Appl. Phys. Lett., vol. 95, p. 082106, 2009.
[20] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd¬2O¬3) as gate dielectrics,” Appl. Phys. Lett., vol. 93, p. 033516, 2008.
[21] C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tostado, G. J. Hughes, E. M. Vogel, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 94, p. 162101, 2009.
[22] E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley-Interscience, New York, 1982.
[23] Young-Chul Byun, Chee-Hong An, Seok-Hee Lee, Mann-Ho Cho, and Hyoungsub Kim, “Thermal Stability of ALD-HfO2/GaAs Pretreated with Trimethylaluminium,” J. Electrochem. Soc., vol. 159, p. G6, 2012.
[24] M. Passlack, “in Materials Fundamentals of Gate Dielectrics,” edited by A. A. Demkov and A. Navrotsky (Springer, Dordrecht), p. 403, 2005.
[25] A. Stesmans and V. V. Afanas’ev, “Si dangling-bond-type defects at the interface of (100)Si with ultrathin layers of SiOx, Al2O3, and ZrO2,” Appl. Phys. Lett., vol. 80, p. 1957, 2002.
[26] R. J. Carter, E. Cartier, A. Kerber, L. Pantisano, T. Schram, S. De Gendt, and M. Heyns, “Passivation and interface state density of SiO2/HfO2- based/polycrystalline-Si gate stacks,” Appl. Phys. Lett., vol. 83, p. 533, 2003.
[27] Daniel M. Fleetwood, ““Border Traps” in MOS Devices,” IEEE Trans. on Nuclear Science, vol. 39, p. 269, 1992.
[28] E. J. Kim, E. Chagarov, J. Cagnon, Y. Yuan, A. C. Kummel, P. M. Asbeck, S. Stemmer, K. C. Saraswat, and P. C. McIntyre, “Atomically Abrupt and Unpinned Al2O3/In0.53Ga0.47As Interfaces: Experiment and Simulation,” J. Appl. Phys., vol. 106, p. 124508, 2009.
[29] Yu Yuan, Lingquan Wang, Bo Yu, Byungha Shin, Jaesoo Ahn, Paul C. McIntyre, Peter M. Asbeck, Mark J. W. Rodwell, and Yuan Taur, “A Distributed Model for Border Traps in Al2O3- InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011.
[30] Eun Ji Kim, Lingquan Wang, Peter M. Asbeck, Krishna C. Saraswat, and Paul C. McIntyre, “Border Traps in Al2O3/In0.53Ga0.47As (100) Gate Stacks and Their Passivation by Hydrogen Anneals,” Appl. Phys. Lett., vol. 96, p. 012906, 2010.
[31] CRC Press, CRC Handbook of Physics and Chemistry, 84th ed, Boca Raton, FL, 2003.
[32] Byungha Shin, Justin R. Weber, Rathnait D. Long, Paul K. Hurley, Chris G. Van de Walle, and Paul C. McIntyre, “Origin and Passivation of Fixed Charge in Atomic Layer Deposited Aluminum Oxide Gate Insulators on Chemically Treated InGaAs Substrates,” Appl. Phys. Lett., vol. 96, p. 152908, 2010.
[33] R. D. Long, B. Shin, S. Monaghan, K. Cherkaoui, J. Cagnon, S. Stemmer, P. C. McIntyre, and P. K. Hurley, “Charged Defect Quantification in Pt/ Al2O3/In0.53Ga0.47As/InP MOS Capacitors,” J. Electrochem. Soc., vol. 158, p. G103, 2011.
[34] V. Djara, K. Cherkaoui, M. Schmidt, S. Monaghan, E. O’Connor, I. M. Povey, D. O’Connell, M. E. Pemble, and P. K. Hurley, “Impact of Forming Gas Annealing on the Performance of Surface-Channel In0.53Ga0.47As MOSFETs With an ALD Al2O3 Gate Dielectric,” IEEE Trans. on Electron Devices, vol. 59, p. 1084, 2012.
[35] Jenny Hu and H.-S. Philip Wong, “Effect of Annealing Ambient and Temperature on the Electrical Characteristics of Atomic Layer Deposition Al2O3/ In0.53Ga0.47As Metal-Oxide-Semiconductor Capacitors and MOSFETs,” J. Appl. Phys., vol. 111, p. 044105, 2012.
[36] Chao-Ching Cheng, Chao-Hsin Chien, Guang-Li Luo, Chun-Hui Yang, Ching-Chih Chang, Chun-Yen Chang, Chi-Chung Kei, Chien-Nan, Hsiao, and Tsong-Pyng Perng, “Effects of Interfacial Sulfidization and Thermal Annealing on the Electrical Properties of an Atomic-Layer-Deposited Al2O3 Gate Dielectric on GaAs Substrate,” J. Appl. Phys., vol. 103, p. 074102, 2008.
[37] H. Ishii, N. Miyata, Y. Urabe, T. Itatani, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Deura, M., Sugiyama, M. Takenaka, S. Takagi, “High Electron Mobility Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channel,” Appl. Phys. Exp., vol. 2, p. 121101, 2009.
[38] Noriyuki Miyata, Hiroyuki Ishii, Yuji Urabe, Taro Itatani, Tetsuji Yasuda, Hisashi Yamada, Noboru Fukuhara, Masahiko Hata, Momoko Deura, Masakazu Sugiyama, Mitsuru Takenaka, Shinichi Takagi, “Origin of Electron Mobility Enhancement in (111)-Oriented InGaAs Channel Metal-Insulator-Semiconductor Field-Effect-Transistors,” Microelectron. Eng., vol. 88, p.3459, 2011.
[39] Urabe, Y., Miyata, N., Ishii, H., Itatani, T., Maeda, T., Yasuda, T., Yamada, H., Fukuhara, N., Hata, M., Yokoyama, M., Taoka, N., Takenaka, M., Takagi, S., “Correlation between Channel Mobility Improvements and Negative Vth Shifts in III–V MISFETs: Dipole Fluctuation as New Scattering Mechanism,” IEDM, 2010 IEEE International, p.6.5.1, 2010.
[40] M. Deura, T. Hoshii, T. Yamamoto, Y. Ikuhara, M. Takenaka, S. Takagi, Y. Nakano, M. Suguyama, “Dislocation-Free InGaAs on Si(111) Using Micro-Channel Selective-Area Metalorganic Vapor Phase Epitaxy,” Appl. Phys. Exp., vol. 2, p. 011101, 2009.
[41] Noriyuki Taoka, Toyoji Yamamoto, Masatomi Harada, Yoshimi Yamashita, Naoharu Sugiyama, and Shinichi Takagi, “Importance of Minority Carrier Response in Accurate Characterization of Ge Metal-Insulator-Semiconductor Interface Traps,” J. Appl. Phys., vol. 106, p. 044506, 2009.
[42] Noriyuki Taoka, Masafumi Yokoyama, Sang Hyeon Kim, Rena Suzuki, Takuya Hoshii, Ryo Iida, Sunghoon Lee, Yuji Urabe, Noriyuki Miyata, Tetsuji Yasuda, Hisashi Yamada, Noboru Fukuhara, Masahiko Hata, Mitsuru Takenaka, and Shinichi Takagi, “AC Response Analysis of C–V Curves and Quantitative Analysis of Conductance Curves in Al2O3/InP Interfaces,” Microelectron. Eng., vol. 88, p.1087, 2011.
[43] Roman Engel-Herbert, Yoontae Hwang, and Susanne Stemmer, “Comparison of Methods to Quantify Interface Trap Densities at Dielectric/III-V Semiconductor Interfaces,” J. Appl. Phys., vol. 108, p. 124101, 2010.

Reference (Chapter 3)
[1] Huaxin Guo, Xingui Zhang, Hock-Chun Chin, Xiao Gong, Shao-Ming Koh, Chunlei Zhan, Guang-Li Luo, Chun-Yen Chang, Hau-Yu Lin, Chao-Hsin Chien, Zong-You Han, Shih-Chiang Huang, Chao-Ching Cheng, Chih-Hsin Ko, Wann, C.H., Yee-Chia Yeo, “A New Self-Aligned Contact Technology for III-V MOSFETs,” VLSI Technology Systems and Applications (VLSI-TSA), p. 152, 2010.
[2] SangHyeon Kim, Masafumi Yokoyama, Noriyuki Taoka, Ryo Iida, Sunghoon Lee, Ryosho Nakane, Yuji Urabe, Noriyuki Miyata, Tetsuji Yasuda, Hisashi Yamada, Noboru Fukuhara, Masahiko Hata, Mitsuru Takenaka, and Shinichi Takagi, “Self-Aligned Metal Source/Drain InxGa1-xAs n-Metal–Oxide–Semiconductor Field-Effect Transistors Using Ni–InGaAs Alloy,” IEDM, p. 596, 2010.
[3] Xingui Zhang, Ivana, Hua Xin Guo, Xiao Gong, Qian Zhou and Yee-Chia Yeoz, “A Self-Aligned Ni-InGaAs Contact Technology for InGaAs Channel n-MOSFETs,” J. Electrochem. Soc., vol. 159, p. H511, 2012.
[4] Sujith Subramanian, Ivana, Qian Zhou, Xingui Zhang, Mahendran Balakrishnan and Yee-Chia Yeo, “Selective Wet Etching Process for Ni-InGaAs Contact Formation in InGaAs N-MOSFETs with Self-Aligned Source and Drain,” J. Electrochem. Soc., vol. 159, p. H16, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊