跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊良
研究生(外文):Chun-Liang Lin
論文名稱:各式弱性微分性質與函數的量度性質
論文名稱(外文):Metrical properties of functions in terms of various forms of weak differentiability
指導教授:劉豐哲
口試委員:劉太平張清煇郭忠勝謝南瑞陳俊全
口試日期:2012-06-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:38
中文關鍵詞:弱微分弱導數
外文關鍵詞:approximate limsupapproximate limitapproximately differentiableapproximate derivativeLipschitz continuousHolder continuous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
依循W. Stepanoff、H Whitney及H. Federer的工作,我們研究函數與各種弱性微分有關的量度性質。綜合他們的工作,可知以下四個敘述的等價性:
(1)u在D上幾乎處處幾近可微(approximately differentiable);
(2)給定ε>0,存在一個定義在R^n上的連續可微函數v,使得u與v相異點所成的集合的測度小於ε;
(3)u的一次差分的幾近上極限(approximate limsup)在D上幾乎處處有限;
(4)u的一階幾近偏導數在D上幾乎處處存在。
接著,W. S. Tai與F. C. Liu把這些結果推廣到更高階(非負整數)的弱性微分性質。我們更進一步地將其推廣到一般階(不限定為非負整數),證明了以下定理:
主要定理. 對γ>0,以下敘述是等價的:
(1)u在D上擁有γ階Lusin性質;
(2)u在D上幾乎處處γ階Lipschitz連續;
(3)u在D上幾乎處處γ階偏Lipschitz連續。
對於證明主要定理的重要工具─Whitney擴張定理,我們也做了仔細的研究,附加上範數的估計,將定理重新敘述成更容易應用的型式。


Metrical properties of measurable functions in terms of various forms of weak differentiability are studied along a line suggested by works of W. Stepanoff, H. Whitney, and H. Federer which can be summarily described as stating that the following four statements are equivalent:
(1) u is approximately differentiable a.e. on D.
(2) Given epsilon > 0, there is a C^1 function v on R^n such that |{x in D : u(x) does not equal v(x)}| < epsilon.
(3) ap-limsup_{y tends to x}|u(y)-u(x)|/|y-x|< ∞ for almost all x ∈ D.
(4) First order approximate partial derivatives of u exist a.e. on D.
W. S. Tai and F. C. Liu then generalize the results to the situation involving higher (integral) order of weak differentiability. For a further generalization to fractional order, we prove the following theorem:
Main Theorem. For gamma > 0, the following statements are equivalent:
(1) u has Lusin property of order gamma on D.
(2) u is approximately Lipschitz continuous of order gamma
at almost every point of D.
(3) u is partially approximately Lipschitz continuous of order gamma at almost all point of D.
Whitney’s Extension Theorem, which is a main tool for the proof of the Main Theorem, is also given a detailed consideration and reformulated in a form with appropriate norm estimates. This form seems to be of a final touch and can be applied more effectively.

口試委員會審定書……………………………………………………………………………………………………………1
中文摘要……………………………………………………………………………………………………………………………2
英文摘要……………………………………………………………………………………………………………………………3
1. Introduction………………………………………………………………………………………………………4
2. Measurability of Sets..…………………………………………………………………………9
3. Whitney’s Extension Theorem with Norm Estimates………11
3.1 Extenion of C^k-functions on F……………………………………………………13
3.2 C^∞-functions on F……………………………………………………………………………………22
4. Proof of Theorem 5……………………………………………………………………………………25
5. Applications of Theorem 5 and Some Remarks……………………29
參考文獻…………………………………………………………………………………………………………………………37


[1] A. P. Calderon, A. Zygmund, Local Properties of Solutions of Elliptic
Partial Differential Equations, Studia Math. 20 (1961), 171-225.
[2] S. Campanato, Propriet’a di una famiglia di spazi funzionali, Ann.
Scuola Norm. Sup. Pisa 18 (1964), 137-160.
[3] A. E. Currier, Proof of the fundamental theorems on second order cross
partial derivatives, Trans. Amer. Math. Soc. 35 (1933), 245-253.
[4] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.
[5] W. C. Lien and F. C. Liu, Maximal mean estimates of Taylor remainder,
Bull. Inst. Math. Acad. Sinica, 29(2001), 79-97.
[6] F. C. Liu, On a theorem of Whitney, Bull. Inst. Math. Acad. Sinica 1
(1973), 63-70.
[7] F. C. Liu, A Localized Lusin Theorem and a Rademacher Type Theorem,
Bull. Inst. Math. Acad. Sinica Vol. 3, No. 2 (2008), 243-253
[8] F. C. Liu, W. S. Tai, Approximate Taylor polynomials and differentiation
of functions, Topol. Methods Nonlinear Anal. 3 (1994), 189-196.
[9] F. C. Liu, W. S. Tai, Maximal Mean Steepness and Lusin Type Properties,
Ricerche di Matem., XLIII(1994), 365-384.
[10] F. C. Liu, W. S. Tai, Lusin Properties and Interpolation of Sobolev
Spaces, Topo. Meth. Nonlin. Ana. Vol. 9 (1997), 163-177.
[11] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press,
1966.
[12] S. Saks. Theory of the integral, Second Edition, Monografje Matemacyczne,
Warszawalwow, 1937.
[13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, 1970.
[14] W. Stepanoff, Sur les conditions de l’existence de la diff’erentielle totale,
Rec. Math. Soc. Math. Moscou 32 (1925) 511-526.
[15] H. Whitney, Analytic extensions of differentiable functions defined in
closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
[16] H. Whitney, On totally differentiable and smooth functions, Pacific J.
Math. 1 (1951), 143-159.
[17] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top