|
[1] A. P. Calderon, A. Zygmund, Local Properties of Solutions of Elliptic Partial Differential Equations, Studia Math. 20 (1961), 171-225. [2] S. Campanato, Propriet’a di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160. [3] A. E. Currier, Proof of the fundamental theorems on second order cross partial derivatives, Trans. Amer. Math. Soc. 35 (1933), 245-253. [4] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. [5] W. C. Lien and F. C. Liu, Maximal mean estimates of Taylor remainder, Bull. Inst. Math. Acad. Sinica, 29(2001), 79-97. [6] F. C. Liu, On a theorem of Whitney, Bull. Inst. Math. Acad. Sinica 1 (1973), 63-70. [7] F. C. Liu, A Localized Lusin Theorem and a Rademacher Type Theorem, Bull. Inst. Math. Acad. Sinica Vol. 3, No. 2 (2008), 243-253 [8] F. C. Liu, W. S. Tai, Approximate Taylor polynomials and differentiation of functions, Topol. Methods Nonlinear Anal. 3 (1994), 189-196. [9] F. C. Liu, W. S. Tai, Maximal Mean Steepness and Lusin Type Properties, Ricerche di Matem., XLIII(1994), 365-384. [10] F. C. Liu, W. S. Tai, Lusin Properties and Interpolation of Sobolev Spaces, Topo. Meth. Nonlin. Ana. Vol. 9 (1997), 163-177. [11] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. [12] S. Saks. Theory of the integral, Second Edition, Monografje Matemacyczne, Warszawalwow, 1937. [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. [14] W. Stepanoff, Sur les conditions de l’existence de la diff’erentielle totale, Rec. Math. Soc. Math. Moscou 32 (1925) 511-526. [15] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. [16] H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143-159. [17] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, 1989.
|