跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾如玲
研究生(外文):Ru-Ling Tseng
論文名稱:玉米穗軸以KOH化學活化法製備高表面積活性碳及其應用
論文名稱(外文):Preparation and Applications of High Surface Area Activated Carbons from Corncob Waste by the KOH Chemical Activation Method
指導教授:曾四恭曾四恭引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:186
中文關鍵詞:活性碳KOH活化法物化性質吸附電化學
外文關鍵詞:activated carbonKOH activationphysical and chemical propertiesadsorptionelectrochemical
相關次數:
  • 被引用被引用:21
  • 點閱點閱:786
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本文以KOH活化法和KOH伴隨CO2複合活化法兩種方法,製備高表面積之玉米穗軸活性碳。物理特性是以BET表面積儀和SEM量測活性碳之比表面積、孔隙容積、孔徑分佈和外觀之變化。觀察活性碳之物理與化學性質變化,發現以KOH活化法KOH/char值在0.5至2範圍,反應是以物理性熱裂解與KOH蝕刻作用並存;KOH/char值在3至6範圍,僅存在化學性KOH蝕刻作用,當KOH/char為6之BET比表面積可達2595m2/g。KOH伴隨CO2複合活化法在KOH/char為1和4,探討活性碳之性質與CO2氣化作用時間之關係,瞭解在低KOH/char值時CO2氣化作用對比表面積和中孔容積比皆有顯著的增加,當KOH/char為4和CO2氣化30分鐘獲得最高表面積2844m2/g。利用元素分析和程溫脫附量測活性碳之化學組成與表面官能基變化,佐證上述反應機構之存在。以循環伏安法量測活性碳電極,比電容與KOH用量之關係呈現
高原型態,其中以KOH/char值為3活性碳之比電容 127 F/g (0.5M H2SO4) 最高,另由表面電阻之變化,瞭解KOH活化法發展高表面積活性碳時,導致碳導電性不連續,影響在電化學之應用。活性碳在溶液中等溫平衡吸附染料和酚類,以Langmuir和Freundlich兩種等溫式解析,計算吸附質在活性碳表面之覆蓋率和單位表面積之貢獻度;以吸附動力學模式探討孔隙質量傳遞,利用t50方法推算顆粒之有效擴散係數,瞭解本文活性碳之吸附性能,並藉此說明,在各種新穎科技用途之潛力。
Two methods, KOH activation and a combination KOH plus CO2 activation, were employed to prepare of corncob derived activated carbon with high surface area in this study. Physical properties of activated carbon including specific surface area, pore volume, pore size distribution, and morphologies were evaluated with the BET surface area analysis and SEM observation. Through the investigations on the variations of physical and chemical properties of activated carbon, as the KOH/char ratios from 0.5 to 2, both physical pyrolysis and KOH etching coexisted during activation; as the KOH/char ratios from 3 to 6, only chemical KOH etching existed. At the KOH/char ratio equal to 6, BET surface area reached 2595 m2/g. The relationships between activated carbon characteristics and CO2 gasification time were investigated at the KOH/char ratios of 1 and 4 for studying the effect of the combined activation process. At the low KOH/char ratio, long CO2 gasification time significantly increased the specific surface area and mesopores volume ratio. At KOH/char equal to 4 and CO2 gasification time equal to 30 minutes, the highest surface area of 2844 m2/g was obtained. Elemental analysis and temperature programmed desorption were employed to measure the variations of chemical properties and functional groups of activated carbon. The results supported the above proposals. Cyclic voltammetry was employed to measure the carbon electrode. Capacitive-like curves with a maximum specific capacitance of 127 F/g (0.5 M H2SO4) was obtained at KOH/char ratio equal to 3. Furthermore, from the variation of surface resistivity, KOH activation for preparing the high surface area activated carbon caused discontinuities of electrical conductivity in carbon, affecting the applicability in electrochemical field. Both Langmuir and Freundlich equations were employed to analyze the adsorption isotherms of dyes and chlorinated phenols in solutions on activated carbons. Adsorbate coverage on activated carbon surface and unit area contribution was calculated. Adsorption kinetics was employed to investigate mass transfer within pores. Method of t50 was employed to calculate the effective diffusion coefficients of particles to understand the adsorption performance of the activated carbons studied in this work, and explained the application potential in various fields of new technology.
摘要………………………………………I
ABSTRCT…………………………………………III
目錄………………………………………………………………V
表目錄………………………………………………………X
圖目錄……………………………………………………………XI
符號說明…………………………………………………………XIV

第一章 前言………………………………………………………1
1.1研究緣起與目的…………………………………………1
1.2研究內容 …………………………………………4
第二章 文獻回顧………………………………………………………………7
2.1 製備活性碳原料…………………………………………………7
2.2 活性碳製備技術………………………………………13
2.2.1物理活化法…………………….………………..13
2.2.2氣體活化法…………………….……………..14
2.2.3化學活化法…………………………………………..16
2.2.4複合活化法…………………………..…………..20
2.3 活性碳孔隙結構………………………..…………..22
2.4化學性質分析………………………………………………29
2.4.1程溫控脫附儀……………………………………………………29
2.4.2活性碳表面酸性及鹼性官能基……………………30
2.4.3基本分析…………………………………………………30
2.4.4 紅外線分光儀…………………………………………………31
2.4.5 掃瞄式電子顯微鏡 …………………………………………32
2.5 吸附等溫平衡………………………………………………37
2.6吸附質覆蓋率………………………………………………………37
2.7吸附動力學………………………………………………………37
2.7.1擴散理論與動力學模式……………………………………38
2.7.2 簡易的吸附動力學模式……………………………………42
2.8 t50方法計算孔隙擴散係數………………………………………46
2.9孔隙特性與超高電容器……………………………………………47
2.10活性碳在氣體儲存之應用…………………………………52
2.10.1天然氣儲存……………………………………………52
2.10.2氫氣儲存………………………………………………54

第三章 實驗方法………………………………………………………56
3.1 活性碳製備……………………………………………56
3.1.1 KOH活化法………………………………………………..56
3.1.2 KOH伴隨CO2氣化法……………………………………..56
3.2 活性碳之物理性質…………………………………………58
3.2.1 孔隙特性………………………………………………..…………..58
3.2.2掃瞄式電子顯微鏡(SEM) …………………………………………..58
3.3 活性碳之化學性質 ……………………………………………………….58
3.3.1 元素分析………………………………………………..58
3.3.2程溫脫附儀(TPD) …………………………………….59
3.4 活性碳之電學性質…………………………………………59
3.4.1電極之製備……………………………………….59
3.4.2電化學測試………………………….……….59
3.4.3 表面電阻測定…………….…………….60
3.5 吸附實驗………………………………………………..60
3.5.1 吸附等溫平衡……………………………………….60
3.5.2 吸附動力學…………………………………………….60
3.5.3 吸附質性質………………………………….61

第四章 結果與討論…………………………………………66
4.1 不同KOH/char 比值之活性碳孔隙特性及吸附……66
4.1.1 孔隙特性…………………………………… …… 66
4.1.2 吸附酚類及染料之動力學………………… ……………76
4.1.3 以t50法計算孔隙擴散係數…………………………………83
4.1.4 綜合討論……………………………………………………89
4.2 複合CO2氣化對活性碳孔隙特性及吸附之影響…………………90
4.2.1 不同CO2氣化時間之活性碳孔隙特性…………………90
4.2.2 SEM觀測 …………………………………………… 98
4.2.3 KOH伴隨CO2氣化之反應機構……………………100
4.2.4. 吸附酚類及染料之動力學…………………………………101
4.2.5 吸附酚類及染料之等溫平衡……………………………108
4.2.6吸附質之覆蓋率……………………………………………108
4.2.7綜合討論………………………………………………………109
4.3活性碳物理的、化學的、電學的和吸附的性質…………113
4.3.1活性碳物理的性質…………………………………113
4.3.2活性碳化學的性質…………………………………117
4.3.3活性碳的表面官能基………………………………122
4.3.4活性碳電學的特性……………………………………………125
4.3.5活性碳吸附的特性………………………………………132
4.3.6綜合討論…………………………………………………138
第五章 結論與建議…………………………………………………139
5.1結論……………………………………………………………………139
5.2建議……………………………………………………………………141

參考文獻……………………………………………………………142
附錄……………………………………………169
一、 元素分析儀……………………………………………… 169
二、 活性碳在廢水處理之應用………………………………172
2.1酚類廢水……….…………………………………………… 172
2.2染料性廢水……….…………………………………………175
2.3腐植系物質……….………………………………………176
2.4鹵烷類廢水…………………………………………………177
2.5其他有機物質……….………………………….…………178
2.6無機物質……….…………………………………………179
2.7生化系物質……….…………………………………………181
三、 等溫平衡模式之理論……………………………………182
3.1二參數之等溫平衡式……….…………………………………182
3.2三參數之等溫平衡式……….…………………………………183
3.3多參數之等溫平衡式…………………………………………184
Abe, I., Fukuhara, T., Maruyama, J., Tatsumoto, H., Iwasaki, S. (2001a), Preparation of carbonaceous adsorbents for removal of chlrorform from drinking water. Carbon 39, 1069-1073

Abe, I., Fukuhara, T., Iwasaki, S., Yasuda, K., Nakagawa, K., Iwata,Y., Kominami, H., Kera,Y. (2001b), Development of a high density carbonaceous adsorbent from compressed wood. Carbon 39, 1485-1490

Aharoni, C., Tompkins F. C. (1970), Kinetics of adsorption and desorption and the Elovich equation. In: Eley, D.D., Pines, H., Weisz, P. B., editors, Advances in catalysis and related subjects , vol. 21, New York: Academic Press, 1-49.

Ahmadpour, A., Do, D. D. (1997), The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon 35, 1723-1732

Ahmadpour, A., Do, D. D. (1996), The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471-479

Akmil-Basar, C., Onal, Y., Kilicer, T., Eren, D. (2005), Adsorptions of high concentration malachite green by two activated carbons having different porous structures. J. Hazardous Materials. B127, 73-80

Alaya, M. N., Hourieh, A. M., Youssef, A. M., El-Sejariah, F.(2000), Adsorption properties of activated carbon prepared from olive stones by chemical and physical activation. Adsorption Science and Technology 18, 27-42

Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., Ahmad, M. N. (2000), Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research 34, 927-935

Almansa, C., Molina-Sabio, M., Rodriguez-Reinoso, F. (2004), Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous and Mesoporous Materials 76, 185-191

Alvim-Ferraz, M. C. M., Cabral Monteiro, J. L. (2000), Structure of impregnated active carbons produced with almond shells-influence of impregnation methodology. Fuel 79, 645-650

Alvim-Ferraz, M.C.M., Gaspar, C.M.T.B. (2005), Catalytic activity carbons impregnated before activation of pinewood sawdust and nutshells to be used on the control of atmospheric emissions. J. Hazardous Materials B119, 135-143

Arriagada,R.,Garcia,R.,Molina-Sabio,M.,Rodriguez-Reinoso,F.(1997), Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalyptus globulus and peach stones . Microporous Materials 8, 123-130

Azargohar, R., Dalai, A.K. (2005), Production of activated carbon from Luscar char: Experimental and modeling studies. Microporous and Mesoporous Materials 85, 219-225

Bacaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Luu, R. P. T., Maldonado- Hodar, F. J., Rivera-Utrilla, J., Moreno- Castilla, C. (2001), Optimization of condition for the preparation of activated carbons from olive-waste cakes. Carbon 39, 425-432

Barkauskas, J., Tautkus, S., Kareiva, A. (2004), Residual content of inorganic ions in activated carbons prepared form wood. J. Anal. Appl. Pyrolysis 71, 201-212

Barrett, E. P., Joyner, L. G., Halenda, P. P. (1951), The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms. J. Am. Chem. Soc. 73, 373-380.

Benaddi, H., Bandosz, T. J., Jagiello, J., Schwarz, J. A., Rouzaud, J. N. Legras, D., Beguin, F. (2000), Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38, 669-674

Bhatnagar, A., Jain, A.K. (2005), A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid and Interface Science 281, 49-55.

Biloe, S., Goetz, V., Guillot, A. (2002), optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40, 1295-1308

Bishnoi, N.R., Bajaj, M., Sharma, N., Gupta, A. (2004), Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource Technol . 91, 305-307

Bisp-Fonseca, I., Aggar, J., Sarrazin, S., Simon, P., Fauvarque, J. F. (1999), Possible improvements in making carbon electrodes for organic supercapacitors. J. Power Sources 79, 238

Bleda-Martinez, M.J., Macia-Agullo, J.A., Lozano-Castello, D., Morallon, E., Cazorla-Amoros, D., Linares-Solano, A. (2005), Role of surface chemistry on double layer capacitance of carbon materials.Carbon 43, 2677-2684

Bodoev, N. V., Gruber, R., Kucherenko, V. A., Guet, J. M., Khabarova, T., Cohaut, N., Heintz, O., Rokosova, N. (1998), A novel process for preparation of active carbon from sapropelitic coals. Fuel 77, 473-478

Boehm, H. P. (1994), Some Aspects of the surface chemistry of Carbon and other Carbons. Carbon 32, 759-769

Bonnefoi, l., Simon, P., Fauvarque, J.F., Sarrazin, C., Dugast, A. (1999a), Electrode optimization for carbon power Supercapacitors. J. Power Sources 79, 37-42

Bonnefoi, L., Simon, P., Fauvarque, J. F., Sarrazin, C., Dugast, A. (1999b), Electrode compositions for carbon power Supercapacitors. J. Power Sources 80, 149-155

Boonamnuayvitaya, V., Sae-ung, S., Tanthapanichakoon, W. (2005), Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation Purification Technology. 42, 159-168

Burke, A. (2000), Ultracapacitors: why, how, and where is the technology. J. Power Sources 91, 37-50

Buschmann, H. J., Jonas, C. and Schollmeyer, E. (1996), The selective removal of dyes from waste water. European Water Pollution Control 6, 21-24

Cao, Q., Xie, K.-C., Lv, Y.-K., Bao, W.-R. (2005), Process effects on activated carbon with large specific surface area from corncob. Bioresource Technology 97, 110-115

Carrasco-Marin, F. (1996), Microporous activated carbons from a bituminous coal. Fuel 75, 966-970

Carvalho, A. P., Cardoso, B., Pires, J., de Carvalho, M. B. (2003), Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon 41, 2873-2884.

Caturla, F., Martin-Martine, J. M., Molina-Sabio, M. Rodriguez-Reinoso, F., Torregrosa, R. (1988), Adsorption of substituted phenols on activated carbon. J. Colloid and Interface Science 12, 528-534

Celzard, A., Albiniak, A., Jasienko-Halat, M., Mareche, J.F., Furdin, G. (2005), Methane storage capacities and pore textures of active carbons undergoing mechanical densification. Carbon 43, 1990-1999

Cheng, P.Z., Teng, H. (2003), Electrochemical responses from surface oxides present on HNO3 treated carbons. Carbon 41, 2057-2063.

Chen, X., Jeyaseelan, S., Graham, N. (2002), Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management. 22, 755-760

Chuah, T.G., Jumasiah, A., Azni, I., Katayon, S., Thomas Choong, S.Y. (2005), Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal : an overview. Desalination. 175, 305-316

Cheung, C. W., Porter, J. F., Mckay, G. (2001), Sorption kinrtic andysis for the removal of cadmium ions from effurnts using bone char. Water Research. 35, 605-612

Chiang, W. C., Chiang, P. C., Chang, E. E.(1998), Evalvations of the physicochemical characterization of activated carbons. J. Environmental Science and Health A34, 1437-1463

Choy, K.K.H., Barford, J.P., Mckay, G. (2005), Production of activated carbon from bamboo scaffolding waste-process design, evaluation and sensitivity analysis. Chemical Engineering Journal 109, 147-165

Chuang, C.L., Fan, M., Xu, M., Brown, R.C., Sung, S., Saha, B., Huang, C.P. (2005), Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere 61, 478-483

Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L., Changhou, L. (2005), Effect of pre- carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43, 2295-2301

Considine, R., Denoyel, R., Pendleton, P., Schumann, R. and Wong, S. H. (2001), The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 179, 271-280

Cook, D., Newcombe, G. and Sztajnbok, P. (2001), The application of powdered activated carbon for mib and geosmin removal: predicting PAC doses in four raw waters. Water Research 35, 1325-1333

Daifullah, A.A.M., Girgis, B.S., Gad, H.M.H. (2004), A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf. 235, 1-10

Daud, W. M. A. W., Ali, W. S. W., Sulaiman, M. Z. (2000), The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon 38, 1925-1932

Dandekar, M.S., Arabale, G., Vijayamohanan, K. (2005), Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors. J. Power Sources 141, 198-203

Daulan, C., Lyubchik, S. B., Rouzaud, J-N., Beguin, F. (1998), Influence of anthracite pretreatment in the Preparation of activated carbons. Fuel 77, 495-502

Dawson, E.A., Parkes, G.M.B., Barnes, P.A., Chinn, M.J. (2003), An investigation of the porosity of carbons prepared by constant rate activation in air. Carbon 41, 571-578

de Boer, J. H., Lippens, B. C., Linsen, B. G., Broekhoff, J. C. P., van den Heuvel, A., Osiga, T. J.(1966), The t-curve of multimolecular N2-adsorption. J. Colloid and Interface Science 21, 405-414.

Diao, Y., Walawender, W.P., Fan, L.T. (2002), Activated carbon prepared from phosphoric acid activation of grain sorghum. Bioresource Technol. 81, 45-52

Diaz-Teran, J., Nevskaia, D.M., Lopez-Peinado, A.J., Jerez, A. (2001), Porosity and adsorption properties of an activated charcoal. Colloids and Surfaces A 187,167-175.

Diaz-Teran, J., Nevskaia, D. M., Fierro, J. L. G., Lopez-Peinado, A. J., Jerez, A. (2003), Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD. Microporous and Mesoporous Materials 60, 173-181

Diaz-Diez, M.A., Gomez-Serrano, V., Fernandez Gonzalez, C., Cuerda-Correa, E.M., Macias-Garcia, A. (2004), Porous texture of activated carbons prepared by phosphoric acid activation of woods. Appl. Surface Sci. 238, 309-313

Duran-Valle, C.J., Gomez-Corzo, M., Pastor-Villegas, J., Gomez-Serrano, V. (2005), Study of cherry stones as raw material in preparation of carbonaceous adsorbents. J. Analytical and Applied Pyrolysis. 73, 59-67

Dutta, M., Baruah, R., Dutta, N. N. and Ghosh, A. C. (1997 a), The adsorption of centain semi-symthetic cephalosporins on activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects 127, 25-37

Dutta, M., Baruah, R., Dutta, N. N. and Ghosh, A. C. (1997 b), Adsorption of 6-aminopenicillanic acid on activated carbon. Separation and Purification Technology 12, 99-108

El-Geundi, M. S. (1997), Adsorbents for industrial pollution control. Adsorpt Sci. Technol. 15, 777-787.

El-Hendawy, A.A., Samra, S.E., Girgis, B.S. (2001), Adsorption characteristics of activated carbons obtained from corncobs. Colloids and Surfaces A180, 209-221

El-Hendawy, A.A. (2003), Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41,713-722


El-Hendawy, A.A. (2005), Surface and adsorptive properties of carbons prepared from biomass. Applied Surface Science 252, 287-295

Ercin, D., Eken, M., Aktas, Z., Cetinkaya, S., Sakintuna, B., Yurum, Y. (2005), Effect of r-irradiation on the structure of activated carbons produced from Turkish Elbistan lignite. Radiation Physics and Chemistry 73, 263-271
Evans, M. J. B., Halliop, E., MacDonald, J. A. F. (1999), The production of chemically-activated carbon. Carbon 37, 269-174.

Fan, M., Marshall, W., Daugaard, D., Brown, R. C. (2004), Steam activation of chars produced from oat hulls and corn stover.Bioreource Technology 93,103-107

Fang, B., Wei, Y-Z., Suzuki, K., Kumagai, M. (2005), Surface modification of carbonaceous materials for EDLCs application. Electrochimica acta 50, 3616-3621

Fierro, V., Torne-Fernandez, V., Montane, D., Celzard, A. (2005), Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochimica Acta 433,142-148

Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., Orfao, J. J. M. (1999), Modification of the surface chemistry of activated carbons. Carbon 37, 1379-1389.

Fujimoto, H., Mabuchi, A., Tokumitsu, K., Kasuh, T. (2000), Relationship between the charge capacity of a turbostratic anode for a Li secondary battery and its structure. Carbon 38, 871-875

Furuya, E. G., Chang, H. T., Miura, Y., Noll, K. E. (1997), A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon. Separation and Purification Technology 11, 69-78

Galiatsatou, P., Metaxas, M., Kasselouri-Rigopoulou, V. (2002), Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J. Hazard. Mater. B91, 187-203

Galiatsatou, P., Metaxas, M., Arapoglou, D., Kasselouri-Rigopoulou, V. (2002), Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Management 22, 803-812
Gamby, J., Taberna, P. L., Simon, P., Fauvarqne, J. F., Chesneau, M. (2001), Studies and characterizations of various activated carbons used for carbon/carbon Supercapacitors. Journal of Power Sources 101, 109-116

Gergova, K., Eser, S. (1996), Effects of activation method on the pore structure of activated carbons from apricot stones. Carbon 34, 879-888

Gierak, A. (1995), Preparation, characterization and adsorption application of spherical carbon adsorbents obtained from sulfonated polymers. Materials Chemistry and Physics. 41, 28-35

Girgis, B. S., Yunis, S. S., Soliman, A. M. (2002), Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters 57,164-172

Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., Frackowiak, E. (2005), Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta 50, 1197-1206.

Gomez-de-Salazar, C., Sepulveda-Escribano, A., Rodriguez-Reinoso, F. (2000), Preparation of carbon molecular sieves by controlled oxidation treatments. Carbon 38, 1889-1892

Gomez-Serrano, V., Cuerda-Correa, E.M., Fernandez-Gonzalez, M.C., Alexandre-Franco, M.F., Macias-Garcia, A. (2005), Preparation of activated carbons from chestnut wood by phosphoric acid-chemical activation. Study of microporosity and fractal dimension. Materials Letters 59, 846-853

Guo, J., Lua, C. A. (1998), Characterization of chars pyrolyzed from oil palm stones for the Preparation of activated carbons. J. Analytical and Applied pyrolysis 46, 113-125

Guo, J., Lua, A. C. (1999), Textural and chemical characterizations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation. Microporous and Mesoporous Materials 32, 111-117

Guo, J., Lua, A. C. (2000a), Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon 38, 1985-1993

Guo, J., Lua, A.C. (2000b), Effect of surface chemistry on gas-phase adsorption by activated carbon prepared from oil-palm stone with pre-impregnation. Separation and Purification Technology 18, 47-55.

Guo, J., Lua, A. C. (2000c), Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon 38, 1985-1993

Guo, J., Lua, A.C. (2002a), Textural and characterization of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. J. Colloid Interface Science 80, 95-106

Guo, J., Lua, A.C. (2002b), Characterization of adsorbent prepared from oil-palm shell by CO2 activation for removal of gaseous pollutants. Materials Letters 55, 334-339

Guo, J., Lua, A.C. (2002c), Microporous activated carbon prepared from palm shell by thermal activation and their application to dioxide adsorption. J. Colloid Interface Sci. 251, 242-247

Guo, J., Lua, A.C. (2003), Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation. Separation and Purification Technology 30, 265-273

Guo, Y., Qi, J., Jiang, Y., Yang, S., Wang, Z., Xu, H. (2003), Performance of electrical double layer capacitors with porous carbons derived from rice husk. Mater, Chem. Phys. 80, 704-709

Guo, J., Xu, W.S., Chen, Y.L., Lua, A. (2005), Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid and Interface Science 281, 285-290

Gupta, G.S., Prasad, G., Singh, V.N. (1990), Removal of chrome dye from aqueous solutions by mixed adsorbents fly ash and coal. Water Research 24, 45-50.

Hamadi, N. K., Chen, X. D., Farid, M. M., Lu, M. G. Q. (2001), Adsorption kinetics for the removal of chromium (Ⅵ) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal 84, 95-105

Hasar, H. (2003), Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. B97, 49-57

Hayashi, J., Horikawa, T., Muroyama, K., Gomes, V.G. (2002a), Activated carbon from chickpea husk by chemical activated with K2CO3: preparation and characterization. Microporous and Mesoporous Materials 55, 63-68

Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., Ani, F.N. (2002b), Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40, 2381-2386

Hayashi, J., Yamamoto, N., Horikawa, T., Muroyama, K., Gomes, V.G. (2005), Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane. J. Colloid and Interface Science 281, 437-443

Ho, Y.S., Mckay, G. (1999), Comparative sorption kinetics studies of dyes and aromatic compounds onto fly ash. J. Environ Sci. Health A34, 1179-1204

Hsieh C.T., Teng H. (2000), Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 38, 863-869

Hu, Z., Vansant, E. F. (1995a), Chemical activation of elutrilithe producing carbon-aluminosilicate composite adsorbent. Carbon 33, 1293-1300

Hu, Z., Vansant, E. F. (1995b), Synthesis and characterization of a controlled-micropore -size carbonaceous adsorbent produced from walnut shell. Micropous Materials 3, 603-612

Hu, Z., Srinivasan, M. P. (1999), Preparation of high-surface-area activated carbons from coconut shell. Microporous and Mesoporous Materials 27, 11-18

Hu, Z., Srinivasan, M. P. (2001), Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials 43, 267-275

Hu Z, Guo H, Srinivasan MP, Yaming N.(2003), A simple method for developing mesoporosity in activated carbon. Separation and Purification Technology 31, 47-52

Hussein, M. Z., Tarmizi, R. S. H., Zainal, Z., Ibrahim, R., Badri, M. (1996), Preparation and characterization of active carbons from oil palm shells. Carbon 34, 1447-1449

Iniesta, E., Sanchez, F., Garcia, A. N., Marcilla, A. (2001), Influence of the holding temperature of the first heating step in a two-heating step carbonization process on the properties of chars and activated carbons from almond shells. J. Analytical and applied Pyrolysis 58-59, 967-981

Inomata, K., Kanazawa, K., Urabe, Y., Urabe, Y., Hosono, H., Araki, T. (2002), Natural gas storage in activated carbon pellets without a binder. Carbon 40, 87-93

Ishikawa, M., Sakamoto, A., Morita, M., Matsuda, Y., Ishida, K. (1996), Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 60, 233-238

Ismadji, S., Sudaryanto, Y., Hartono, S.B., Srtiawan, L.E.K., Ayucitra, A. (2005), Activated carbon from char obtained from vacuum pyrolysis of teak sawdust :pore structure development and characterization. Bioresource Technology 96, 1364-1369

Jagtoyen, M., Derbyshire, F. (1998), Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 36, 1085-1097

Juang, R.S., Tseng, R.L., Wu, F.C., Lee, S.H. (1996), Liquid-phase adsorption of phenol and its derivatives on activated carbon fibers. Separation Science and Technology, 31, 1915-1913

Juang, R.S., Tseng, R.L., Wu, F.C., Lee, S.H. (1997), Adsorption behavior of reactive dyes from aqueous solutions on chitosan. J. Chem. Tech. Biotechnol 70, 391-399

Juang, R. S., Chem, M. L. (1997), Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins. Ind. Eng. Chem. Res. 36, 813-820

Juang, R. S., Tseng, R. L., Wu, F. C. (2001), Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes. Adsorption 7, 65-72

Juang, R. S., Wu, F. C., Tseng, R. L. (2002), Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption. Colloids and Surfaces 201, 191-199

Juang, R. S., Wu, F. C., Tseng, R. L. (2000), Mechanism of adsorption of dyes and phenols from water using activated carbons prepares from plum kernels. J. Colloid and Interface Science. 227, 437-444

Junpirom, S., Do, D.D., Tangsathitkulchai, C., Tangsathitkulchai, M. (2005), A carbon activation model with application to longan seed char gasification. Carbon 43, 1936-1943

Jurewicz, K., Babel, K., Zilkowski, A., Wachowska, H. (2003), Ammoxidation of active carbons for improvement of supercapcitor characteristics. Electrochimica Acta 48, 1491-1498

Kadirvelu, K., Palanival, M., Kalpana, R., Rajeswari, S. (2000), Activated carbon from an agricultural by-product, for the treatment of dyeing industry wastewater. Bioresource Technology 74, 263-265

Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., Pattabhi, S. (2003), Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technol. 87, 129-132

Kannan, N., Sundaram M. M. (2001), Kinetics and mechanism of removal of methylene blue by adsorbents on various carbons a comparative study. Dyes and Pigments 51, 25-40

Kennedy, L.J., Judith, J., Sekaran, G. (2005), Electrical conductivity study of porous carbon composite derived from rice husk. Materials Chemistry and Physics 91, 471-476

Khezami, L., Chetouani, A., Taouk, B., Capart, R. (2005), Production and characterization of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology 157, 48-56

Kim,Y. J., Horie, Y., Matsuzawa,Y., Ozaki, S., Endo, M., Dresselhaus, M. S. (2004), Structural features necessary to obtain a high specific capacitance in electric double layer capacitors. Carbon 42, 2423-2432

Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., Machnikowski, J. (2004), Electro- chemical capacitors based on highly porous carbons prepared by KOH actiation. Electrochimica Acta 49, 515-523

Kinoshita, k. (1988), Carbon, in: Electrochemical and Physicochemical Properties, John-Wiley & Sons, New York.

Krishnan, K.A., Anirudhan, T.S. (2002), Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. J. Hazardous Materials B92, 161-183

Kobya, M., Demirbas, E., Senturk, E., Ince,M. (2005), Adsorption of heavy metal ions aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology 96, 1518-1521

Kyotani, T. (2000), Control of pore structure in carbon. Carbon 39, 269-286

La, L., Saenz, T. (2001), CO2 activation of char from Quercus agrifolia wood waste. Carbon 39, 1367-1377

Laszlo, K., Bota, A., Nagy, L. G., Cabasso, I. (1999), Porous carbon from polymer waste materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151, 311-320

Laszlo, K., Szucs, A. (2001), Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2, 3, 4-trichlorophenol solutions. Carbon 39, 1945-1953

Laszlo, K. (2005), Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry. Colloids and Surfaces A 265, 32-39

Lee, W. H., Reucroft, P. J. (1999), Vapor adsorption on coal-and wood-based chemically activated carbons (Ⅱ) adsorption of organic vapors. Carbon 37, 15-20

Legrouri, K., Khouya, E., Ezzine, M., Hannache, H., Denoyel, R., Pallier, R., Naslain, R. (2005), Production of activated carbon from a new precursor molasses by activation with sulphuric acid. J.Hazardous Materials B118, 259-263

Leong, W. Y., Teo, E. H., Lim, C. H., Tan, Y. L. (1998), Efficiency of adsorbents for removal of organosulphur compounds in water. Water Scieuce and Technology 38, 139-146

Lewandowski, A., Zajder, M., Frackowiak, E., Beguin, F. (2001), Super capacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochimica Acta 46, 2777-2780

Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A. (2003), Understandling chemical reactions between carbons and NaOH and KOH an insight into the chemical activation mechanism. Carbon 41, 267-275

Lillo-Rodenas, M. A., Juan-Juan, J., Cazorla-Amoros, D., Linares-Solano, A. (2004), About reactions occurring during chemical activation with hydroxides. Carbon 42, 1365-1369

Lillo-Rodenas, M. A., Logano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A. (2001), Preparation of activated carbons from Spanish anthracite Ⅱ. Activation by NaOH. Carbon 39, 751-759

Lima, I., Marshall, W.E. (2005), Utilzation of turkey manure as granular activated carbon: Physical, chemical and adsorptive properties. Waste Management 25,726-732

Lin, Z., Ling, L., Qiao, W., Liu, L. (1999), Effect of hydrogen on the mesopore development of pitch-based spherical activated carbon containing iron during activation by steam. Carbon 37, 2063-2066

Liu, H.-Y., Wang, K.-P., Teng, H. (2005), A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation. Carbon. 43, 559-566

Lopez, M., Labady, M., Laine, J. (1996), Preparation of activated carbon from wood monolith. Carbon 34, 825-827

Lozano-Castello, D., Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A. (2001), Preparation of activated carbons from Spanish anthractile: Ⅰ.Activation by KOH. Carbon 39, 741-749

Lozano-Castello, D., Alcaniz-Monge, J., Cazorla-Amoros, D., Linares-Solano, A., Zhu, W., Kapteijn, F., Moulijn, J.A. (2005), Adsorption properties of carbon molecular sieves prepared from an activated carbon by pitch pyrolysis. Carbon 43, 1643-1651

Lua, A. C., Guo, J. (1998), Preparation and characterization of chars from oil palm waste. Carbon 36, 1663-1670

Lua, A. C., Guo, J. (2001), Preparation and characterization of activated carbons from oil-palm stones for gas- phase adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 179, 151-162

Lua, A.C., Yang, T. (2004a), Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J. Colloid and Interface Science 276, 364-372

Lua, A.C., Yang, T., Guo, J. (2004), Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 72, 279-287

Lua, A.C., Yang, T. (2004b), Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid and Interface Science 274, 594-601

Lua, A.C., Yang, T. (2005), Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride under nitrogen and vacuum conditions. J. Colloid and Interface Science 290, 505-513

MacDonald, J.A.F., Quinn, D.F. (1998), Carbon adsorbents for natural gas storage. Fuel 77, 61-64

Macia-Agullo, J. M., Moore, B. C., Cazorla-Amoros, D., Linares-Solano, A. (2004), Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 42, 1361-1364

Malik, P.K. (2003), Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes and Pigments 56, 239-249

Mandic, M., Vukovic, Z., Lazic, S., Raicevic, S. (1996), Sorption of hypoiodous acid on activated carbon. J. Radioanalytical and Nuclear Chemistry. 208, 453-460

Manju, G. N., Raji, C., Anirudhan, T. S. (1998), Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research 32, 3062-3070

Matsui, Y., Yuasa, A., Li, F. S. (1999), Pretreatment effects on activated carbon adsorption on Humic Substances: distributed fictive component analysis. Water Science and Technology 40, 223-230

Matos, J., Labady, M., Albornoz, A., Laine, J., Brito, J.L. (2005), Catalytic effect of KOH on textural changes of carbon macro-networks by physical activation. J. Molecular Catalysis. 228, 189-194

Mckey G., Blair H.S., Gardner J. (1983), The adsorption of dyes in chitin. Ⅲ. Intraparticle diffusion processes. J. Applied Polmer Science. 28, 1767-1778

Meghea, A., Rehner, H. H., Peleanu, I., Mihalache, R. (1998), Test-fitting on adsorption isotherms of organic pollutants from waste water on activated carbon. J. Radioanalytical and Nuclear Chemistry. 229, 105-110

Meshko, V., Markovska, L., Mincheva, M., Rodrigues, A. E. (2001), Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Research 35, 3357-3336

Mitani, S., Lee, S. I., Yoon, S. H., Korai, Y., Mochida, I. (2004), Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. J. Power Sources 133, 298-301

Minkova,V., Marinov, S. P., Zanzi, R., Bjornbom, E., Budinova, T., Stefanova, M., Lakov, L. (2000), Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide, Fuel Processing Technology 62, 45-52

Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N. (2005), Removal of chromium(6) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science 60, 3049-3059

Mohan, D., Singh, K.P., Sinha, S., Gosh, D. (2005), Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. Carbon 43, 1680-1693

Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F., Selles, M. J. (1996), Development of porosity in combined phosphoric acid-carbon dioxide activation. Carbon 34, 457-462

Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F., Seller, M. J. (1995), Porosity in granular carbons activated with phosphoric acid. Carbon 33, 1105-1113

Mollah, A. H., Robinson, C. W. (1996 a), Pentachlorophenol adsorption and desorption characteristics of granular activated carbon-Ⅰ. Isotherms. Water Research 30, 2901-2906

Mollah, A. H., Robinson, C. W. (1996 b), Pentachlorophenol adsorption and desorption characteristics of granular activated carbon-Ⅱ. kinetics. Water Research 30, 2907-2913

Momma, T., Liu, X., Osaka, T., Ushio, Y., Sowada, Y. (1996), Electrochemical modification of active carbon fiber electrode and its application to double-layler capacitor. J. Power Sources 60, 249-254

Morawski, A. W. and Inagaki, M. (1997), Application of modified synthetic carbon for adsorption of trihalomethanes (THMs) from water. Desalination. 114, 23-27

Moreno-Castilla, C., Carrasco-Marin, F., Lopez-Ramon, M.V., Alvarez-Merino, M.A. (2001), Chemical and physical activation of olive-mill waste water to produce activated carbon. Carbon 39, 1415-1420

Moreno-Castilla, C., Rivear-Utrilla, J., Lopez-Ramon, M. V., Carrasco-Marin, F. (1995), Adsorption of some substituted phenols and activated carbons from a bituminous coal. Carbon 33, 845-851

Nagano, S., Tamon, H., Adzumi, T., Nakagawa, K., Suzuki, T. (2000), Activated carbon from municipal waste, Carbon, 38, 915-920

Nakagawa, H., Shudo, A., Miura, K. (2000), Hight-capacuty electric double-layer capacitor with high-density activated carbon fiber electrodes. Journal Electrochemical Soc. 147, 38-47

Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., Hellal, A. (2005), Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J. Hazardous Materials B119, 189-194

Namasivayam, C., Kadirvelu, K. (1997), Activated carbons prepared from coir pith by physical and chemical activation methods, Bioresource Technology 62, 123-127

Namasivayam, C., Kavitha, D. (2002), Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 54, 47-58

Newcombe, G., Drikas, M., Hayes, R. (1997), Influence of characterized natural organic material on activated carbon adsorption: Ⅱ. effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Research 31, 1065-1073

Ng, C., Losso, J. N., Marshall, W. E., Rao, R. M. (2002), Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin . Bioresource Technology 84, 177-185

Nian Y. R., Teng, H. (2003), Influence of surface oxides on the impedance behavior of carbon-based electrochemical cpacitors, J. Electroanalytical Chemistry 540, 119-127

Oh, G. H., Park, C. R. (2002), Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity, Fuel 81, 327-336

Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A. (2003), Adsorption properties of activated carbon from waste newspaper prepared by chemical and physical activation. J. Colloid and Interface Science 262, 194-199

Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A. (2003), Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J. Colloid and Interface Science 262, 179-193

Otake, Y., Jenkins, R.G.. (1993), Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment. Carbon 31,109-121

Othman, M. Z., Roddick, F. A. and Hobday, M. D. (2000), Evaluation of Victorian low rank coal-based adsorbents for the removal of organic compounds from aqueous systems. Water Research 34, 4351-4358

Park, J. H., Park O. O. (2002), Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources 111, 185-190

Park, G. G., Yang, T. H., Yoon, Y. G., Lee, W. Y., Kim, C. S.( 2003), Pore size effect of the DMFC catalyst supported on porous materials. Internation Journal of Hydrogen Energy 28, 645-650

Pastor-Villegas, J., Dur’an-Valle, C.J. (2002), Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose. Carbon 40, 397-402

Pelekani, C., Snoeyink, V.L. (2000), Competitive adsorption between atrazine and methylene blue on activated carbon the importance of pore size distribution, Carbon 38, 1423-1436

Perez-Candela, M., Martin-Martinez, J. M., Torregrosa-Macia, R. (1995), Chromium (Ⅵ) removal with activated carbons. Water Research 29, 2174-2180

Perrin, A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F., Furdin. G. (2004), NaOH activation of anthracites: effect of temperature on pore textures and methane storage ability. Carbon 42, 2855-2866

Perrin, A., Celzard, A., Albiniak, A., Jasienko-Halat, M., Mareche, J.F., Furdin, G. (2005), NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous and Mesoporous Materials 81, 31-40

Pis, J. J., Mahamud, M., Pajares, J. A., Parra, J. B., Bansal, R. C. (1998), Preparation of active carbons from coal: PartⅢ: Activation of char. Fuel Processing Technology 57, 149-161

Pokonova, Y. V. (1998), Carbon adsorbents for the sorption of arsenic. Carbon 36, 457-471

Prakash Kumar, B.G., Miranda, L.R., Velan, M. (2005), Adsorption of bismark brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods. J. Hazardous Materials B126, 63-70

Puziy, A.M., Poddubnaya, O.I., Martinez-Alonso, A., Suarez-Garcia, F., Tascon, J.M.D. (2005), Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43, 2857-2868

Qu, D., Shi, H. (1998), Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99-107

Qu, D. (2002), Studies of activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403-411

Quinlivan, P.A., Li, L., Knappe, D.R.U. (2005), Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673

Rajeshwarisivaraj, Sivakumar, S., Senthilkumar, P., Subburam, V. (2001), Carbon from Cassave peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresource Technology 80, 233-235

Rengaraj, S., Moon, S.H., Sivabalan, R., Arabindoo, B., Murugesan, V. (2002), Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J. Hazard. Mater. B89, 185-196

Rio, S., Faur-Brasquet, C., Coq, L.L., Courcoux, P., Cloirec, P. L. (2005), Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation-application to air and water treatments. Chemosphere 58,423-437

Rodriguez-Reinoso, F., Molina-Sabio, M., Gonzalez, M. T. (1995), The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33, 15-23

Robau-Sanchez, A., Aguilar-Elguezabal, A., Aguilar-Pliego, J.A. (2005), Chemical activation of Quercus Agrifolia char using KOH: Evidence of cyanide presence. Microporous and Mesoporous Materials 85, 331-339

Ruthven, D. M. (1984), Principles of adsorption and desorption processes. New York, Wiley

Sainz-Diaz, C. I., Griffiths, A. J. (2000), Activated carbon from solid wastes using a pilot-scale bactch flaming pyrolyser. Fuel 79, 1863-1871

Saliger, R., Fischer, U., Herta, C., Fricke, J. (1998), High surface area carbon aerogels for supercapacitors. Journal of Non-Crytalline Solids 225, 81-85

Salvador, F. and Merchan, M. D. (1996), Study of the desorption of phenol and phenolic compounds from activated carbon by liquid-phase temperature-programmed desorption. Carbon 34, 1543-1551

Sanchez, A. R., Elguezabal, A. A., Saenz, L. L. T. (2001), CO2 activation of char from Quercus agrifolia wood waste. Carbon 39, 1367-1377

Sarkar, D., Chattoraj, D. K. (1993), Activation parameters for kinetics of protein adsorption at silica-water interface. J. Colloid and Interface Science 175, 219-226

Seggiani, M., Vitolo, S., Filippis, P.D. (2005), Effect of pre-oxidation on the porosity development in a heavy oil fly ash by CO2 activation. Fuel 84, 1854-1857

Sekar, M., Sakthi, V., Rengaraj, S. (2004), Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J. Colloid and Interface Science 279, 307-313

Shawabken, R.A., Rockstraw, D.A., Bhada, R.K. (2002), Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40, 781-786

Shi, H., (1996), Activated carbons and double layer capacitance. Electrochimica Acta 41, 1633-1639

Sinha, P. K., Lal, K. B., Ahmed, J. (1997), Removal of radioiodine from liquid effluents. Waste Management 17, 139-146

Singh, B.K., Rawat, N.S. (1994), Comparative sorption Kinetic studies of phenolic compounds on fly ash and impregnated fly ash. J. Chem. Tech. Biotechnol 61, 57-65

Singh, B., Madhusudhanan, S., Dubey, V., Nath, R. and Rao, N. B. S. N. (1996), Active carbon for removal of toxic chemicals from contaminated water. Carbon 34, 327-330

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. (1985), Reporting physisorption deta for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 57, 603-619.

Sirotkin, A. S., Koshkina, L. Y., Ippolitor, K. G. (2001), The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants. Water Research 35, 3265-3271

Slaney, A.J., Bhamidimarri, R. (1998), Adsorption of pentachlorophenol (PCP) by activated carbon in fixed beds: application of homogeneous surface diffusion model. Wat Sci Tech. 38, 227-235

Song, K. C., Kim, H. D., Lee, H. K., Park, H. S., Lee, K. J. (1997), Adsorption characteristics of radiotoxic cesium and iodine from low-level liquid waste. J. Radioanalytical and Nuclear Chemi stry 223, 199-205

Sousa-Aguilar, E.F., Liebsch, A., Chaves, B.C., Costa, A.F. (1998), Influence of external surface area of small cryatallite zeolites on the micropore volume determination. Microporous and Mesoporous Materials 25, 185-192.

Srinivasakannan, C., Bakar, M. Z. A. (2004), Production of activated carbon from rubber wood sawdust. Biomass & Bioenergy 27, 89-96.

Stavropoulos, G.G. (2005), Precursor materials suitability for super activated carbons production. Fuel Processing Technology 86, 1165-1173

Streat, M., Patrick, J. W., Camporro Perez, M. J. (1995), Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons. Water Research 29, 467-472

Strobel, R., Jorissen, L., Schliermann, T., Trapp, V., Schutz, W., Bohmhammel, K., Wolf, G., Garche, J. (1999), Hydrogen adsorption on carbon materials. J. Power Sources 84, 221-224

Sun, J., Rood, M. J., Rostam-Abadi, M., Lizzio, A. A. (1996), Natural gas storage with activated carbon from a bituminous coal. Gas Separation Purification 10, 91-96

Suzuki, M. (1990), Adsorption Engineering. Kodansha, Tokyo

Tamai, H., Yoshida, T., Sasaki, M., Yasuda, H. (1999), Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon 37, 983-989

Tanahashi, I., Yoshida, A., Nishino, A. (1990), Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. Journal Electrochemical Soc. 137, 3052-3061

Tancredi, N., Cordero, T., Rodriguez-Mirasol, J. (1996), Activated carbons from uruguayan eucalyptus wood. Fuel 75, 1701-1706

Tancredi, N., Medero, N., Moller, F., Piriz, J., Plada, C., Cordero, T. (2004), Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J. Colloid and Interface Science 279, 357-363

Tanthapanichakoon, W., Ariyadejwanich, P., Japthong, P., Nakagawa, K., Mukai, S.R., Tamon, H. (2005), Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Research 39, 1347-1353

Tay, J. H., Chen, X. G., Jeyaseelan, S., Graham, N. (2001a), A comparative study of anaerobically digested and undigested sewage sludges in preparation of activated carbons. Chemosphere 44, 53-57

Tay, J. H., Chen, X. G., Jeyaseelan, S., Graham, N. (2001b), Optimising the preparation of activated carbon from digested sewage sludge and cocon. Chemosphere 44, 45-51

Teng, H., Yeh, T. S., Hsu, L. Y. (1998), Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36, 1387-1395

Teng, H., Wang, S.C. (2000), Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation. Carbon 38, 817-824

Tennant, M. F., Mazyck, D. W. (2003), Steam-pyolysis activation of wood char for superior odorant removal. Carbon 41, 2195-2202

Terzyk, A. P. and Rychlick, G. (2000), The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro the temperature dependence of adsorption at the neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects 163, 135-150

Texier-mandoki, N., Dentzer, J., Piquero, T., Saadallah, S., David, P., Vix-Guterl, C. (2004), Hydrogen storage in activated carbon materials : Role of the nonaporous texture. Carbon 42, 2735-2777

Tryba, B., Morawski, A.W., Inagaki, M. (2003), Application of TiO2-mounted carbon to the removal of phenol from water. Appl. Catalysis B: Environ. 41, 427-433

Tsai, W. T., Chang, C. Y., Lee, S. L. (1998), A low cost adsorbens from agricultural waste corn cob by zinc chloride activation. Bioresource Technology 64, 211-217

Tsai, W.T., Chang, C. Y., Lee, S. L. (1997), Preparation and characterization of activated carbons from corncob. Carbon 35, 1198-1200

Tsai, W. T., Chang, C. Y., Wang, S. Y., Chang. C. F., Chien, S. F., Sun, H. F. (2001a), Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resources, Conservation and Recycling 32, 43-53

Tsai W. T., Chang C.Y., Wang S.Y., Chang C.F., Chien S.F., Sun H.F. (2001b), Preparation of activated carbons from corncob catalyzed by potassium salts and subsequent gasification with CO2. Bioresource Technology 78, 203-208.

Tsai, W. T., Chang, C. Y., Lin, M. C., Chien, S. F., Sun, H. F., Hsieh, M. F. (2001c), Adsorption of acid dye onto activated carbons prepared from agricultural waste bagass by ZnCl2 activation. Chemosphere 45, 51-58

Tseng, R.L., Wu, F.C., Juang, R.S. (1999a), Effect of complexing agents on liquid-phase adsorption and desorption of copper(II) using chitosan. J. Chem. Tech. Biotechnol 74, 533-538

Tseng, R. L., Wu, F. C., Juang, R.S. (1999b), Pore structure and metal adsorption ability of chitosans prepared from fishery wastes. J.Environ. Sci. Health A34 (9), 1815-1828

Tseng, R. L., Wu, F. C., Juang, R. S. (2003), Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41,487-495

Tseng, R.L., Tseng, S.K. (2005) Pore structure and adsorption performance of the KOH-activated carbons prepared from corcob. J. Colloid and Interface Science 287, 428-437

Tutem, E., Apak, R., Unal, G. F. (1998), Adsorptive removal of chlorophenols from water by bituminous shale. Water Reserach 32, 2315-2324

Valix, M., Cheung, W.H., McKay, G. (2004), Preparation of activated carbon using low temperature carbonization and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 56, 493-501

Walker, Jr., P.L. (1996), Production of activated carbons: use of CO2 versus H2O as activating agent. Carbon 34, 1297-1299

Walker, G.M., Weatherley, L.R. (1999), Kinetics of acid dye adsorption on GAC. Wat. Sci. Tech. 33, 1895-1899

Walker, G.M., Weatherley, L.R. (2001), Adsorption of dyes from aqueous solution- the effect of adsorbent pore size distribution and dye aggregation. Chemical Engineering Journal 83, 201-206

Weber, W.J., Morris, J.C., Conf, P.I. (1962), On water pollution symposium, vol. 2. Oxford: Pergamon Press

Wei, Y-Z., Fang, B., Iwasa, S., Kumagai, M. (2005), Anovel electrode material for electric double-layer capacitors. J. power sources 141, 386-391

Wu, F.C., Hsu, Y.C., Tseng, R.L. (1994), Kinetic study on the adsorption of dyestuff on activated clay. J. Chinese Institute Environ. Eng, 4(3), 207-216

Wu, F.C., Tseng, R.L., Juang,R.S. (1999), Prepation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J. Environ. Sci. Health A34 (9), 1753-1775

Wu, F. C., Tseng, R. L., Juang, R. S. (1999a), Pore structure and adsorption performance of the activated carbons prepared from plum kernels. J. Hazardous Materials B69, 287-302

Wu, F. C., Tseng, R. L., Juang, R. S. (1999b), Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J. Environmental Science and Health A34, 1753-1775

Wu, F. C., Tseng, R. L. (2000), Adsorption characteristics and pore structure of activated carbons prepared from agricultural waster. Taiwanese Jounal of Agricultural Chemistry and Food Science 38,(3), 205-213

Wu, F. C., Tseng, R. L., Juang, R. S. (2001), Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes. Enviromental Technology 22, 205-213

Wu, F. C., Tseng, R. L., Hu, C. C., Wang, C. C.(2004), Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. J. Power Soures 138, 351-359.

Wu, F. C., Tseng, R. L., Juang, R. S. (2005a), Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid and Interface Science 283, 49-56

Wu, F. C., Tseng, R. L., Hu, C. C. (2005b), Comparisons of properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials 80, 95-106.

.Xiao, Q., Zhou, X. (2002), The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta 48, 575-580

Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q. (2006), Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44, 216-224

Yalcin, N., Sevinc, V. (2000), Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon 38, 1943-1945

Yang, T., Lua, A.C. (2003a), Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J. Colloid and Interface Science 267, 408-417

Yang, T., Lua, A.C. (2003b), Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation. Microporous and Mesoporous Materials 63, 113-124

Yoshizawa, N., Maruyama, K., Yamada, Y., Zielinska-Blajet, M. (2000), XRD evaluation of CO2 activation process of coal and coconut shell-based carbons. Fuel 79, 1461-1466

Youssef, A.M., El-Nabarawy,T.H., Samra, S.E. (2004), Sorption properties of chemically- activated carbons 1. Sorption of cadmium (II) ions. Colloids Surf. 235, 153-163

Youssef, A.M., Radwan, N.R.E., Abdel-Gawad, I., Singer, G.A.A. (2005), Textural properties of activated carbons from apricot stones. Colloids and Surfaces A 252, 143-151

Zhang,T., Walawender, W.P., Fan, L.T., Fan, M., Daugaad, D., Brown, R.C. (2005), Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal 105, 53-59

Zhang, F.-S., Nriagu, J.O., Itoh, H. (2005), Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research 39, 389-395
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top