跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王獻德
研究生(外文):Shen-De Wang
論文名稱:低溫複晶矽薄膜電晶體之氟鈍化製程與可靠度的研究
論文名稱(外文):Study on Fluorine Passivation Techniques and the Reliability for Low Temperature Polycrystalline Silicon Thin-Film Transistors
指導教授:雷添福
指導教授(外文):Tan-Fu Lei
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:133
中文關鍵詞:低溫複晶矽薄膜電晶體低溫複晶矽鈍化薄膜電晶體
外文關鍵詞:poly-Si TFTsLow Temperature Poly-SiFluorinePassivationTFTs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:2
此論文提出多種氟鈍化(passivatation)技術以製作高效能且高可靠度的複晶矽薄膜電晶體(poly-Si TFTs)。此外,我們亦研究在電壓應力(electrical stress)測試下,複晶矽薄膜電晶體之開啟電流(On-current)及關閉電流(Off-current)的不穩定性。最後,我們利用高解析度的掃描式電容顯微鏡(scanning capacitance microscopy, SCM)系統開發出一種探測氧化層崩潰(oxide breakdown)點的技術。
首先,我們提出與現有製程具高度匹配性的四氟化碳電漿處理(CF4 plasma treatment)技術,用以製作高效能的固態結晶(solid-phase-crystallized)之複晶矽薄膜電晶體。利用此技術,氟原子可以有效地被導入複晶矽薄膜中以消除薄膜中的載子補獲態(trap states),進而有效地提升元件特性。經由四氟化碳電漿處理的複晶矽薄膜電晶體具有好的臨限擺幅(subthreshold swing)、低的臨界電壓(threshold voltage)及高的元件開關電流比(On/Off current ratio);其載子電致遷移率(field-effect mobility)也提升了22.8 %。此外,四氟化碳電漿處理也提升元件的抗熱載子(hot-carrier)破壞的能力。之後,我們在將此技術搭配準分子雷射退火(exciner laser annealing),應用於製作高性能的雷射處理之複晶矽薄膜電晶體 (ELA poly-Si TFTs)。實驗結果證明氟電漿處理能有效地鈍化複晶矽中及氧化層與複晶矽界面上的缺陷。因此,元件的特性可獲得大幅的提升。最重要的是因為矽-氟的高強度鍵結能,經過熱載子應力(hot carrier stress)測試後,發現摻入氟原子的複晶矽薄膜電晶體具有較好的可靠度。另外,我們亦提出一種利用氟矽玻璃(fluorinated silicate oxide, FSG)當緩衝層的複晶矽薄膜電晶體製程。利用此方法亦可有效的鈍化複晶矽缺陷,進而大幅改善元件特性、均勻性及可靠度。其中,氟在氟矽玻璃中最佳的含量大約介於 2% 到 4% 間。
接著,本論文探討複晶矽薄膜電晶體在不同電壓應力測試下的開啟電流(On-current)及關閉電流(Off-current)的不穩定性。利用施加不同的閘極及汲極電壓來研究應力測試下所產生的元件劣化情形。經由結果我們歸納出,氧化層的捕獲電荷(trap charges)及複晶矽通道中的載子補獲態(trap states)之數量與空間分佈是造成開啟電流(On-current)及關閉電流(Off-current)的變化的最主要因素。我們利用此技術完成一個完整的模型以解釋複晶矽薄膜電晶體的開啟電流及關閉電流之不穩定性的原因。
在論文的最後,我們開發出一種利用掃描式電容顯微鏡(scanning capacitance microscopy, SCM)搭配原子力顯微鏡(atomic force microscopy, AFM)的探針掃描技術以研究氧化層的崩潰(oxide breakdown)現象。此技術可以清楚地掃描出氧化層崩潰點(breakdown spots) 的局部分佈。這些崩潰點因為具高度導通性(conductivity)因而顯示出非常低的微分電容值(dC/dV)訊號。由結果顯示出,氧化層的崩潰點的直徑大概為 6奈米(nm)到13.5奈米之間。此外,根據原子力顯微鏡的結果,我們亦發現氧化層的崩潰現象並不會造成其表面平坦度的改變。
In this thesis, various fluorine passivation techniques for fabricating high-performance and high-reliability polycrystalline silicon thin-film transistors (poly-Si TFTs) are proposed and discussed. In addition, the On-current (Ion) and Off-current (Ioff) instabilities of poly-Si TFTs under electrical stress are thoroughly investigated. At last, a new scheme by employing high-resolution scanning capacitance microscopy (SCM) is developed to scan the breakdown spots on oxide films.
First, a process-compatible CF4 plasma treatment for fabricating high-performance solid-phase-crystallized (SPC) poly-Si TFTs is demonstrated. Using this technique, fluorine atoms can be introduced into poly-Si films to passivate trap states, and hence the performance of SPC poly-Si TFTs can be significantly improved. The fluorinated SPC poly-Si TFTs exhibit good subthreshold slope, low threshold voltage, and better On/Off current ratio. The fluorinated poly-Si TFT also shows approximately 22.8 % enhancement in the maximum field-effect mobility. Moreover, the CF4 plasma treatment also promotes the device’s hot-carrier immunity. Then, CF4 plasma treatment combined with excimer laser annealing (ELA) is proposed to fabricate high-performance ELA poly-Si TFTs. Fluorine can effectively passivate the trap states near the SiO2/poly-Si interface. With fluorine incorporation, the electrical characteristics of ELA poly-Si TFTs are significantly improved. The CF4 plasma treatment also improves the device reliability of ELA poly-Si TFTs with respect to hot-carrier stress, which is due to the formation of strong Si-F bonds. Another fluorine passivation technique is also proposed by adopting fluorinated silicate oxide (FSG) as a buffer layer. Experimental results reveal that the device performance, uniformity and reliability can be remarkably improved with appropriate fluorine content (2% to 4%) in the FSG layer.
Then, the On-current (Ion) and Off-current (Ioff) instabilities of poly-Si TFTs are thoroughly investigated under various electrical stress conditions. The stress-induced device degradation is studied by measuring the dependences of Ion and Ioff on the applied drain/gate voltages. From the results, dissimilar variations of Ion and Ioff can be observed, which is attributed to the variances in the amount of trap charges in the gate oxide and the spatial distributions of trap states generated in the poly-Si channel. A comprehensive model for the degradation of Ion and Ioff in poly-Si TFTs under various electrical stress conditions is proposed.
Finally, scanning capacitance microscopy (SCM), combined with atomic force microscopy (AFM), is employed to investigate the dielectric breakdown phenomena in SiO2 films. The localized breakdown spots can be clearly imaged by this technique. The breakdown spots exhibit signals with low differential capacitance (dC/dV) due to high conductivity. The diameters of these breakdown spots are from 6 nm to 13.5 nm. Moreover, according to the corresponding AFM images, their surface morphology shows little change after the occurrence of oxide breakdown.
Contents

Chapter 1 Introduction ……………………………………………1

Chapter 2 CF4 Plasma Treatment on Solid-Phase-Crystallized (SPC) Poly-Si TFTs.…………………………………………………16

Chapter 3 Improved Performance and Reliability of Excimer-Laser-Annealed (ELA) Poly-Si TFTs with CF4 plasma treatment …………………………………………………………………………39

Chapter 4 Performance and Reliability of Poly-Si TFTs on FSG Buffer Layer ……………………………………………………66

Chapter 5 Drain/Gate-Voltage-Dependent On-Current and Off-Current Instabilities in Poly-Si TFTs under Electrical stress……………………………………………………………………86

Chapter 6 Observation of Localized Breakdown Spots in Oxide Films using Scanning Capacitance Microscopy …………………………………………………………………………111

Chapter 7 Conclusions and Further Recomendations………130
[1] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda and T. Nagano, “ Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, vol. 42, no. 7, pp. 1305-1313, 1995.
[2] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, no. 11 pp. 1930-1936, 1996.
[3] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, no. 5 pp. 1086-1096, 1991.
[4] Y. Hayashi, H. Hayashi, M. Negishi and T. Matsushita, “A thermal printer head with CMOS thin-film transistors and heating elements integrated on a chop,” IEEE Solid-State Circuits Conference (ISSCC), pp. 266, 1988.
[5] N. Yamauchi, Y. Inada and M. Okamura, “An intergated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett., vol. 5, pp. 319, 1993.
[6] M. G. Clark, “Current status and future prospects of poly-Si,” IEE Proc. Circuits Devices Syst., vol. 141, no. 1, pp. 3, 1994.
[7] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001.
[8] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” in SID Tech. Dig., pp.156, 1983.
[9] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781, 1991.
[10] C. H. Fa, and T. T. Jew, “The polysilicon insulated-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 13, no. 2, pp. 290, 1966.
[11] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986.
[12] I. -W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19, 1995.
[13] A. Nakamura, F. Emoto, E. Fujii and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” in IEDM Tech. Dig., pp.847, 1990.
[14] R. B. Iverson and R. Reif, “Recrystallization of amorphized polycrystalline silicon films on SiO2: temperature dependence of the crystallization parameters,” J. Appl. Phys., vol. 62, no. 5, pp. 1675-1681, 1987.
[15] F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y. Yamamoto, Y. Uemoto, and Gota Kano, “ Solid phase growth technique for hogh cut-off frequency polysilicon TFT integrated circuits on a quartz substrate,” IEEE Trans. Electron Devices, vol. 37, pp. 1462, 1990.
[16] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, no. 7, pp. 2260-2266, 1988.
[17] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, 1999.
[18] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1876-1879, 1994.
[19] T. Sameshima, S. Usui and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986.
[20] D. H. Choi, E. Sadauyki, O. Sugiura and M. Matsumra, “Excimer-laser crystallized poly-Si TFT’s with mobility more than 600 cm2/V.s,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 2129, 1993.
[21] K. Shimizu, O. Sugiura and M. Matsumra, “High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 112-117, 1993.
[22] S. Y. Yoon, K. Hyung, C. O. Kim, J. Y. Oh and J. Jang, “Low temperature metal induce crystallization of amorphous silicon using a Ni solution,” J. Appl. Phys., vol. 82, pp. 5865-5867, 1997.
[23] G. Radnoczi, A. Robertsson, H. T. G.. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys., vol. 69, pp. 6394-6399, 1991.
[24] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., vol. 84, pp.194-200, 1998.
[25] S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160-162, 1996.
[26] H. Kim, J. G. Couillard and D. G. Ast, “Kinetic of silicide-induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett., vol. 72, pp. 803-805, 1998.
[27] Z. Jin, H. S. Kwok and M. Wong, “Performance of thin-film transistors with ultrathin Ni-NILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., vol. 20, pp. 167-169, 1999.
[28] G. Y. Yang, S. H. Hur and C. H. Han, “A physical-based analytical turn-on model of polysilicon thin-film transistors for circuit simulation,” IEEE Trans. Electron Devices, vol. 46, pp. 165-172, 1999.
[29] K. R. Olasupo and M. K, Hatalis, “Leakage current mechanism in sub-micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1218-1223, 1996.
[30] C. H. Hong, C. Y. Park and H. J. Kim, “Structure and crystallization of low-pressure chemical vapor deposited silicon films using Si2H2 gas,” J. Appl. Phys., vol. 71, pp.5427-5432, 1992.
[31] J. H. Jeon, M. C. Lee, K. C. Park, M. K. Han, “A new polycrystalline silicon TFT with a single grain boundary in the channel,” IEEE Electron Device Lett., vol. 22, no. 9, pp. 429-431, 2001.
[32] A. Yin, and S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device lett., vol. 15, no. 12, pp. 502-503, 1994.
[33] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3 annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device lett., vol. 15, pp. 389-390, 1994.
[34] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Characteristics of polysilicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device lett., vol. 18, pp. 172-174, 1997.
[35] K. C. Moon, J. H. Lee, M. K. Han, “Improvement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices, vol. 49, pp. 1319-1322, 2002.
[36] T. Unagami and O. Kogure, “Large on/off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988.
[37] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device lett., vol. 16, no. 5, pp. 161-163, 1995.
[38] Z. Xiong, H. Liu, C. Zhu and Sin, J.K.O., “Characteristics of high-K spacer offset-gated polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1304-1308, 2004.
[39] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron Device lett., vol. 20, no. 8, pp. 421-423, 1999.
[40] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device lett., vol. 17, no. 12, pp. 566-568, 1996.
[41] A.Bonfiglietti, M. Cuscuna, A.Valletta, L. Mariucci, A. Pecora, G. Fortunato, S. D. Brotherton and J. R. Ayres, “Analysis of electrical characteristics of gate overlapped lightly doped drain (GOLDD) polysilicon thin-film transistors with different LDD doping concentration,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2425-2433, 2003.
[42] Y. Mishima and Y. Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 981-985, 2002.
[43] H. C. Lin, C.-M Yu, C.-Y. Lin, K.-L.Yeh, T. Y. Huang and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device lett., vol. 22, no. 1, pp. 26-28, 2001.
[44] C. S. Lai, C. L. Lee, T. F. Lei and H. N. Chern, “A novel vertical bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE Electron Device lett., vol. 17, no. 5, pp. 199-201, 1996.
[45] M. J. Tasi, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, and H. C. Chen, “Characterization of H2/N2 plasma passivation process for poly-Si thin-film transistors (TFTs),” Solid State Electronics, vol. 38, no. 5, pp.1233-1238, 1995
[46] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 plasma passivation on n-channel Polycrystalline silicon thin-film-transistors,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 64-68, 1997.
[47] H. N. Chern, C. L. Lee, and T. F. Lei, “H2/O2 plasma on polysilicon thin film transistor,” IEEE Electron Device Lett., vol. 14, pp.115-117, 1993.
[48] C. W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huang, H. C. Cheng, H. C. Lin, T. S. Chao and C. Y. Chang, “Effects of plasma treatments, substrates type, and crystallization methods on performance and reliability of low temperature polysilicon TFTs” in IEDM Tech. Dig., pp.305, 1999.
[49] I.-W. Wu, W. B. Jackson, T.-Y. Huang, A. G. Lewis and A. Chiang, “Mechanism of device degradation in n- and p-channel polysilicon TFT’s by electrical stressing,” IEEE Electron Device Lett., vol. 11, no. 4, pp. 167-170, 1990.
[50] M. Hack, A. G. Lewis, and I.-W. Wu, “Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 890-897, 1993.
[51] H. N. Chern, C. L. Lee, and T. F. Lei, “The effects of fluorine passivation on polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 698-702, May 1994.
[52] S. Maegawa, T. Ipposhi, S. Maeda, H. Nishimura, T. Ichiki, M. Ashida, O. Tanina, Y. Inoue, T. Nishimura and N. Tsubouchi, “Performanc and reliability improvements in poly-Si TFT’s by fluorine implantation into gate poly-Si,” IEEE Trans. Electron Devices, vol. 42, pp. 1106-1111, June 1995.
[53] J. W. Park, B. T. Ahn, and K. Lee, “Effects of F+ implantation on the characteristics of poly-Si films and low-temperature n-ch poly-Si thin-film transistors,” Jpn. J. Appl. Phys., vol. 34, pp. 1436-1441, Mar. 1995.
[54] C. H. Fan and M. C. Chen, “Performance improvement of excimer laser annealed Poly-Si TFTs using fluorine ion implantation” Electrochemical and Solid State Lett., vol. 5, pp. G75-G77, 2002.
[55] C. H. Kim, S. H. Jung, J. S. Yoo, and M. K. Han, “Poly-Si TFT fabricated by laser-induced in-situ fluorine passivation and laser doping,” IEEE Electron Device lett., vol. 22, pp. 396-398, Aug. 2001.
[56] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” IEEE Trans. Electron Devices, vol. 39, pp. 598-606, Mar. 1992.
[57] F. V. Farmakis, J. Brini, G. Kamarinos and C. A. Dimitriadis, “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, no. 2, pp. 74-76, 2001.
[58] G. Fortunato, A. Pecora, G. Tallarida, L. Mariucci, C. Reita and P. Migliorato, “Hot carrier effects in n-channel polycrystalline silicon thin-film transisitors: A correlation between off-current and transconductance variations,” IEEE Trans. Electron Devices, vol. 41, no.3, pp. 340-346, 1994.
[59] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussel, G.. Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability,” IEEE Trans. Electron Devices, vol. 49, no.3, pp. 500-506, 2002.
[60] J. S. Suehle, “Ultrathin gate oxide reliability: physical models, statistics, and characterization,” IEEE Trans. Electron Devices, vol. 49, no.6, pp. 958-971, 2002.
[61] M. Nafria, J. Sune, and X. Aymerich, “Exploratory observations of post-breakdown conduction in polycrystalline-silicon and metal-gated thin-oxide metal-oxide-semiconductor capacitors,” J. Appl. Phys., vol. 73, pp. 205-215, 1993.
[62] S. Lombardo, A. La Magna, C. F. Spinella, C. Gerardi, and F. Crupi, “Degradation and hard breakdown transient of thin gate oxides in metal–SiO2–Si capacitors: Dependence on oxide thickness,” J. Appl. Phys., vol. 86, pp. 6382-6391, 1999.
[63] J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, Z. G. Khim, and S. Park, “Local charge trapping and detection of trapped charge by scanning capacitance microscope in the SiO2/Si system,” Appl. Phys. Lett., vol. 75, pp. 1760-1762, 1999.
[64] C. Y. Nakakura, D. L. Hetherington, M. R. Shaneyfelt, P. J. Shea and A. N. Erikson, “Observation of metal–oxide–semiconductor transistor operation using scanning capacitance microscopy,” Appl. Phys. Lett., vol. 75, pp. 2319-2321, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊