|
[1] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda and T. Nagano, “ Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, vol. 42, no. 7, pp. 1305-1313, 1995. [2] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Trans. Electron Devices, vol. 43, no. 11 pp. 1930-1936, 1996. [3] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, vol. 38, no. 5 pp. 1086-1096, 1991. [4] Y. Hayashi, H. Hayashi, M. Negishi and T. Matsushita, “A thermal printer head with CMOS thin-film transistors and heating elements integrated on a chop,” IEEE Solid-State Circuits Conference (ISSCC), pp. 266, 1988. [5] N. Yamauchi, Y. Inada and M. Okamura, “An intergated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett., vol. 5, pp. 319, 1993. [6] M. G. Clark, “Current status and future prospects of poly-Si,” IEE Proc. Circuits Devices Syst., vol. 141, no. 1, pp. 3, 1994. [7] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol. 9, pp. 169-172, 2001. [8] S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” in SID Tech. Dig., pp.156, 1983. [9] R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1781, 1991. [10] C. H. Fa, and T. T. Jew, “The polysilicon insulated-gate field-effect transistor,” IEEE Trans. Electron Devices, vol. 13, no. 2, pp. 290, 1966. [11] W. G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, pp. 477-481, 1986. [12] I. -W. Wu, “Cell design considerations for high-aperture-ratio direct-view and projection polysilicon TFT-LCDs,” in SID Tech. Dig., pp. 19, 1995. [13] A. Nakamura, F. Emoto, E. Fujii and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” in IEDM Tech. Dig., pp.847, 1990. [14] R. B. Iverson and R. Reif, “Recrystallization of amorphized polycrystalline silicon films on SiO2: temperature dependence of the crystallization parameters,” J. Appl. Phys., vol. 62, no. 5, pp. 1675-1681, 1987. [15] F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y. Yamamoto, Y. Uemoto, and Gota Kano, “ Solid phase growth technique for hogh cut-off frequency polysilicon TFT integrated circuits on a quartz substrate,” IEEE Trans. Electron Devices, vol. 37, pp. 1462, 1990. [16] M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys., vol. 63, no. 7, pp. 2260-2266, 1988. [17] G. K. Guist, and T. W. Sigmon, “High-performance laser-processed polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 20, no. 2, pp. 77-79, 1999. [18] N. Kudo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin-film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1876-1879, 1994. [19] T. Sameshima, S. Usui and M. Sekiya, “XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s,” IEEE Electron Device Lett., vol. 7, no. 5, pp. 276-278, 1986. [20] D. H. Choi, E. Sadauyki, O. Sugiura and M. Matsumra, “Excimer-laser crystallized poly-Si TFT’s with mobility more than 600 cm2/V.s,” IEEE Trans. Electron Devices, vol. 40, no. 11, pp. 2129, 1993. [21] K. Shimizu, O. Sugiura and M. Matsumra, “High-mobility poly-Si thin-film transistors fabricated by a novel excimer laser crystallization method,” IEEE Trans. Electron Devices, vol. 40, no. 1, pp. 112-117, 1993. [22] S. Y. Yoon, K. Hyung, C. O. Kim, J. Y. Oh and J. Jang, “Low temperature metal induce crystallization of amorphous silicon using a Ni solution,” J. Appl. Phys., vol. 82, pp. 5865-5867, 1997. [23] G. Radnoczi, A. Robertsson, H. T. G.. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys., vol. 69, pp. 6394-6399, 1991. [24] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys., vol. 84, pp.194-200, 1998. [25] S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabrication by metal-induced lateral crystallization,” IEEE Electron Device Lett., vol. 17, pp. 160-162, 1996. [26] H. Kim, J. G. Couillard and D. G. Ast, “Kinetic of silicide-induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett., vol. 72, pp. 803-805, 1998. [27] Z. Jin, H. S. Kwok and M. Wong, “Performance of thin-film transistors with ultrathin Ni-NILC polycrystalline silicon channel layers,” IEEE Electron Device Lett., vol. 20, pp. 167-169, 1999. [28] G. Y. Yang, S. H. Hur and C. H. Han, “A physical-based analytical turn-on model of polysilicon thin-film transistors for circuit simulation,” IEEE Trans. Electron Devices, vol. 46, pp. 165-172, 1999. [29] K. R. Olasupo and M. K, Hatalis, “Leakage current mechanism in sub-micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1218-1223, 1996. [30] C. H. Hong, C. Y. Park and H. J. Kim, “Structure and crystallization of low-pressure chemical vapor deposited silicon films using Si2H2 gas,” J. Appl. Phys., vol. 71, pp.5427-5432, 1992. [31] J. H. Jeon, M. C. Lee, K. C. Park, M. K. Han, “A new polycrystalline silicon TFT with a single grain boundary in the channel,” IEEE Electron Device Lett., vol. 22, no. 9, pp. 429-431, 2001. [32] A. Yin, and S. J. Fonash, “High-performance p-channel poly-Si TFT’s using electron cyclotron resonance hydrogen plasma passivation,” IEEE Electron Device lett., vol. 15, no. 12, pp. 502-503, 1994. [33] C. K. Yang, T. F. Lei, C. L. Lee, “The combined effects of low pressure NH3 annealing and H2 plasma hydrogenation on polysilicon thin-film-transistors,” IEEE Electron Device lett., vol. 15, pp. 389-390, 1994. [34] J. W. Lee, N. I. Lee, J. I. Kan, C. H. Han, “Characteristics of polysilicon thin-film transistor with thin-gate dielectric grown by electron cyclotron resonance nitrous oxide plasma,” IEEE Electron Device lett., vol. 18, pp. 172-174, 1997. [35] K. C. Moon, J. H. Lee, M. K. Han, “Improvement of polycrystalline silicon thin film transistor using oxygen plasma pretreatment before laser crystallization,” IEEE Trans. Electron Devices, vol. 49, pp. 1319-1322, 2002. [36] T. Unagami and O. Kogure, “Large on/off current ratio and low leakage current poly-Si TFTs with multichannel structure,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1986-1989, 1988. [37] B. H. Min, C. M. Park and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device lett., vol. 16, no. 5, pp. 161-163, 1995. [38] Z. Xiong, H. Liu, C. Zhu and Sin, J.K.O., “Characteristics of high-K spacer offset-gated polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1304-1308, 2004. [39] P. S. Shih, C. Y. Chang, T. C. Chang, T. Y. Huang, D. Z. Peng and C. F. Yeh, “A novel lightly doped drain polysilicon thin-film transistor with oxide sidewall spacer formed by one-step selective liquid phase deposition,” IEEE Electron Device lett., vol. 20, no. 8, pp. 421-423, 1999. [40] K. Y. Choi and M. K. Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device lett., vol. 17, no. 12, pp. 566-568, 1996. [41] A.Bonfiglietti, M. Cuscuna, A.Valletta, L. Mariucci, A. Pecora, G. Fortunato, S. D. Brotherton and J. R. Ayres, “Analysis of electrical characteristics of gate overlapped lightly doped drain (GOLDD) polysilicon thin-film transistors with different LDD doping concentration,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2425-2433, 2003. [42] Y. Mishima and Y. Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 981-985, 2002. [43] H. C. Lin, C.-M Yu, C.-Y. Lin, K.-L.Yeh, T. Y. Huang and T. F. Lei, “A novel thin-film transistor with self-aligned field induced drain,” IEEE Electron Device lett., vol. 22, no. 1, pp. 26-28, 2001. [44] C. S. Lai, C. L. Lee, T. F. Lei and H. N. Chern, “A novel vertical bottom-gate polysilicon thin film transistor with self-aligned offset,” IEEE Electron Device lett., vol. 17, no. 5, pp. 199-201, 1996. [45] M. J. Tasi, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, and H. C. Chen, “Characterization of H2/N2 plasma passivation process for poly-Si thin-film transistors (TFTs),” Solid State Electronics, vol. 38, no. 5, pp.1233-1238, 1995 [46] H. C. Cheng, F. S. Wang, and C. Y. Huang, “Effects of NH3 plasma passivation on n-channel Polycrystalline silicon thin-film-transistors,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 64-68, 1997. [47] H. N. Chern, C. L. Lee, and T. F. Lei, “H2/O2 plasma on polysilicon thin film transistor,” IEEE Electron Device Lett., vol. 14, pp.115-117, 1993. [48] C. W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huang, H. C. Cheng, H. C. Lin, T. S. Chao and C. Y. Chang, “Effects of plasma treatments, substrates type, and crystallization methods on performance and reliability of low temperature polysilicon TFTs” in IEDM Tech. Dig., pp.305, 1999. [49] I.-W. Wu, W. B. Jackson, T.-Y. Huang, A. G. Lewis and A. Chiang, “Mechanism of device degradation in n- and p-channel polysilicon TFT’s by electrical stressing,” IEEE Electron Device Lett., vol. 11, no. 4, pp. 167-170, 1990. [50] M. Hack, A. G. Lewis, and I.-W. Wu, “Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 890-897, 1993. [51] H. N. Chern, C. L. Lee, and T. F. Lei, “The effects of fluorine passivation on polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 698-702, May 1994. [52] S. Maegawa, T. Ipposhi, S. Maeda, H. Nishimura, T. Ichiki, M. Ashida, O. Tanina, Y. Inoue, T. Nishimura and N. Tsubouchi, “Performanc and reliability improvements in poly-Si TFT’s by fluorine implantation into gate poly-Si,” IEEE Trans. Electron Devices, vol. 42, pp. 1106-1111, June 1995. [53] J. W. Park, B. T. Ahn, and K. Lee, “Effects of F+ implantation on the characteristics of poly-Si films and low-temperature n-ch poly-Si thin-film transistors,” Jpn. J. Appl. Phys., vol. 34, pp. 1436-1441, Mar. 1995. [54] C. H. Fan and M. C. Chen, “Performance improvement of excimer laser annealed Poly-Si TFTs using fluorine ion implantation” Electrochemical and Solid State Lett., vol. 5, pp. G75-G77, 2002. [55] C. H. Kim, S. H. Jung, J. S. Yoo, and M. K. Han, “Poly-Si TFT fabricated by laser-induced in-situ fluorine passivation and laser doping,” IEEE Electron Device lett., vol. 22, pp. 396-398, Aug. 2001. [56] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” IEEE Trans. Electron Devices, vol. 39, pp. 598-606, Mar. 1992. [57] F. V. Farmakis, J. Brini, G. Kamarinos and C. A. Dimitriadis, “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, no. 2, pp. 74-76, 2001. [58] G. Fortunato, A. Pecora, G. Tallarida, L. Mariucci, C. Reita and P. Migliorato, “Hot carrier effects in n-channel polycrystalline silicon thin-film transisitors: A correlation between off-current and transconductance variations,” IEEE Trans. Electron Devices, vol. 41, no.3, pp. 340-346, 1994. [59] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussel, G.. Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability,” IEEE Trans. Electron Devices, vol. 49, no.3, pp. 500-506, 2002. [60] J. S. Suehle, “Ultrathin gate oxide reliability: physical models, statistics, and characterization,” IEEE Trans. Electron Devices, vol. 49, no.6, pp. 958-971, 2002. [61] M. Nafria, J. Sune, and X. Aymerich, “Exploratory observations of post-breakdown conduction in polycrystalline-silicon and metal-gated thin-oxide metal-oxide-semiconductor capacitors,” J. Appl. Phys., vol. 73, pp. 205-215, 1993. [62] S. Lombardo, A. La Magna, C. F. Spinella, C. Gerardi, and F. Crupi, “Degradation and hard breakdown transient of thin gate oxides in metal–SiO2–Si capacitors: Dependence on oxide thickness,” J. Appl. Phys., vol. 86, pp. 6382-6391, 1999. [63] J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, Z. G. Khim, and S. Park, “Local charge trapping and detection of trapped charge by scanning capacitance microscope in the SiO2/Si system,” Appl. Phys. Lett., vol. 75, pp. 1760-1762, 1999. [64] C. Y. Nakakura, D. L. Hetherington, M. R. Shaneyfelt, P. J. Shea and A. N. Erikson, “Observation of metal–oxide–semiconductor transistor operation using scanning capacitance microscopy,” Appl. Phys. Lett., vol. 75, pp. 2319-2321, 1999.
|