跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白昆哲
研究生(外文):Kun-Che Pai
論文名稱:探討以射頻磁控濺鍍法在聚對苯二甲酸乙二酯基板上沉積透明氧化鋅摻雜鋁鎵之薄膜特性
論文名稱(外文):Characteristics of Gallium and Aluminum Co-doped ZnO Transparent Thin Films Deposited on PET Substrates by RF Magnetron Sputtering
指導教授:蔡健益
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料與製造工程所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:56
中文關鍵詞:電暈放電聚對苯二甲酸乙二酯射頻磁控濺鍍氧化鋅摻雜鋁鎵薄膜
外文關鍵詞:CoronaPETRF magnetron sputteringGAZO thin film
相關次數:
  • 被引用被引用:4
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以電暈放電(Corona)的方式針對聚對苯二甲酸乙二酯(PET)基板表面進行改質處理,並藉由接觸角等量測方式瞭解PET表面經電暈放電改質後的表面能及表面形態之變化。實驗中利用射頻磁控濺鍍系統(RF magnetron sputtering system),沉積氧化鋅摻雜鋁鎵(GAZO)薄膜,探討基板溫度(25 ~ 135 ℃)對薄膜微觀組織與光電特性之影響。實驗結果顯示:電暈功率在3 kW、傳送速度為2 m/min的條件下,電暈放電可提升PET基板表面的親水性及表面能至56達因以上,藉此可提高薄膜的附著能力。沉積薄膜時的基板溫度越高成膜速率越快、薄膜結晶性及電性越好。當基板溫度在135 ℃下所沉積之氧化鋅摻雜鋁鎵薄膜可得到最佳結晶性、最低的電阻率0.372 Ω-cm、最高的載子濃度3.03 × 1018 cm3 及最高的載子移動速率5.53 cm2/Vs。
The author reported that surface treatment for PET substrates by using corona discharge and Ga and Al co-doped ZnO (GAZO) thin films deposited on as-treatment PET substrates by RF magnetron sputtering. Characterization of PET substrates after corona discharge was carrier out by contact angle and laser scanning microscopy. Experimental results showed that surfaces of PET substrates were modified corona discharge, at a power of corona discharge of 3 kW and at a transmission speed of 2 m/min, would improve surface energy above 56 mN/m. Moreover, transparent and flexible GAZO thin films were prepared by RF magnetron sputtering. Effect of substrate temperatures on crystallinity levels, microstructures, optical and electrical properties of these GAZO thin films were investigated. Experimental results also showed that deposition rates, crystallinity levels and electrical properties of GAZO thin films improved with substrate temperatures increasing. Among the GAZO thin films in this study, the films deposited on substrate temperature at 135 ℃which exhibited the best properties, namely highest crystallinity level, a resistivity of 0.372 Ω-cm, a carrier concentration of 3.03×1018 cm3 and a carrier mobility of 5.53 cm2/ Vs.
總目錄
中文摘要-------------------------------------------------------------------------Ⅰ
英文摘要-------------------------------------------------------------------------Ⅱ
誌謝-------------------------------------------------------------------------------Ⅲ
總目錄----------------------------------------------------------------------------Ⅳ
圖目錄----------------------------------------------------------------------------Ⅷ
表目錄----------------------------------------------------------------------------XI
第一章 緒論--------------------------------------------------------------------- 1
1.1前言-----------------------------------------------------------------------1
1.2研究動機-----------------------------------------------------------------3
第二章 文獻回顧---------------------------------------------------------------4
2.1聚對苯二甲二乙酯(PET)簡介---------------------------------------4
2.2高分子表面處理之方法----------------------------------------------7
2.2.1火焰處理-------------------------------------------------------- 7
2.2.2電暈放電---------------------------------------------------------7
2.2.3化學處理---------------------------------------------------------7
2.2.4離子束改質------------------------------------------------------7
2.2.5電漿處理---------------------------------------------------------7
2.3氧化鋅(ZnO)薄膜特性------------------------------------------------9
2.4濺鍍原理---------------------------------------------------------------12
2.5氧化鋅系薄膜性質與基板溫度之相關性------------------------13
2.6薄膜之微結構---------------------------------------------------------14
2.7氧化鋅系薄膜沉積於玻璃基板與塑膠基板之性質------------15
2.8軟性 (可撓式)電子產品之應用------------------------------------16
第三章實驗方式與流程------------------------------------------------------18
3.1實驗流程---------------------------------------------------------------18
3.2基板前製處理---------------------------------------------------------19
3.2.1電暈設備介紹--------------------------------------------------20
3.2.2接觸角量測-----------------------------------------------------21
3.2.3 PET表面形態分析--------------------------------------------22
3.2.4達因筆測試-----------------------------------------------------23
3.2.5光學特性量測--------------------------------------------------24
3.3沉積GAZO薄膜於PET基板-------------------------------------25
3.3.1薄膜晶體結構分析--------------------------------------------26
3.3.2薄膜顯微組織觀察(SEM)------------------------------------26
3.3.3表面形貌分析(AFM) -----------------------------------------26
3.3.4霍爾量測--------------------------------------------------------26
3.3.5光學特性量測--------------------------------------------------27
3.3.6百格測試--------------------------------------------------------27
第四章 實驗結果與分析 ---------------------------------------------------28
4.1經不同電暈功率改質後之PET基板特性分析----------------28
4.1.1接觸角量測-----------------------------------------------------28
4.1.2表面形態分析--------------------------------------------------30
4.1.3粗糙度分析-----------------------------------------------------32
4.1.4表面能分析-----------------------------------------------------33
4.1.5光穿透率分析--------------------------------------------------35
4.1.6 PET經不同電暈功率處理後的性質變化-----------------36
4.2 GAZO薄膜特性分析----------------------------------------------37
4.2.1薄膜晶體結構分析(XRD) -----------------------------------37
4.2.2薄膜之顯微組織觀察-----------------------------------------39
4.2.2.1薄膜表面形貌觀察-------------------------------------39
4.2.2.2薄膜橫截面觀察-----------------------------------------40
4.2.3薄膜表面形貌分析(AFM )-----------------------------------41
4.2.4薄膜電性量測--------------------------------------------------43
4.2.5光穿透率分析--------------------------------------------------44
4.2.6薄膜附著力測試(百格測試) --------------------------------47
4.2.7不同基板溫度下沉積GAZO薄膜性質之變化----------48
第五章 結論-------------------------------------------------------------------49
參考資料-----------------------------------------------------------------------50

圖目錄
圖2-1 PET分子結構-----------------------------------------------------------5
圖2-2 PET之DSC分析-------------------------------------------------------6
圖2-3氧化鋅晶體結構-------------------------------------------------------10
圖2-4 Al摻雜量對AZO薄膜載子遷移率與載子濃度之影響--------11
圖2-5濺鍍過程之示意圖 ---------------------------------------------------12
圖2-6基板溫度對GZO薄膜結晶性之影響------------------------------13
圖2-7基板溫度對GZO薄膜電性之影響---------------------------------13
圖2-8氣體壓力及基板溫度對薄膜成長之影響--------------------------15
圖2-9 AZO薄膜沉積於玻璃基板與塑膠基板之結晶性比較----------16
圖2-10 AZO薄膜沉積於玻璃基板與塑膠基板之光穿透率比較-----16
圖2-11軟性電子產品之應用-------------------------------------------------17
圖3-1基板前製處理流程圖--------------------------------------------------18
圖3-2沉積GAZO薄膜之流程圖-------------------------------------------19
圖3-3電暈系統(a)電暈設備之示意圖(b)產生電暈之狀態-------------20
圖3-4材料表面與液體間作用力--------------------------------------------21
圖3-5彩色3D雷射掃瞄顯微鏡 -------------------------------------------22
圖3-6達因筆--------------------------------------------------------------------23
圖3-7判定達因筆之液體於材料表面之狀態示意圖--------------------23
圖3-8穿透率檢測系統--------------------------------------------------------24
圖3-9 Van der Pauw法量測示意圖-----------------------------------------27
圖3-10附著力判斷的標準---------------------------------------------------27
圖4-1不同電暈功率時PET基板與水滴接觸之狀態 -----------------28
圖4-2電暈功率對PET接觸角之影響 -----------------------------------29
圖4-3電暈功率對PET表面形態之影響----------------------------------30
圖4-4電暈功率對PET表面形貌之影響----------------------------------31
圖4-5電暈功率對PET表面粗糙度之影響-------------------------------32
圖4-6 PET基板於不同電暈功率時達因筆之分佈狀態----------------33
圖4-7電暈功率對PET基板表面能之影響------------------------------34
圖4-8電暈處理後的PET表面能隨時間的變化狀態------------------34
圖4-9電暈功率對PET光穿透率之影響---------------------------------35
圖4-10不同基板溫度沉積GAZO薄膜之晶體結構分析--------------37
圖4-11不同基板溫度沉積GAZO薄膜之晶粒尺寸分析--------------38
圖4-12不同基板溫度沉積GAZO薄膜之表面形貌(插圖為低倍率之SEM影像-50k )----------------------------------------------------------------39
圖4-13不同基板溫度沉積GAZO薄膜之橫截面形態----------------40
圖4-14不同基板溫度沉積薄膜表面形態(電暈功率3 kW) ----------41
圖4-15不同基板溫度沉積薄膜表面形貌(電暈功率3 kW)-----------42
圖4-16不同基板溫度沉積薄膜表面粗糙度(電暈功率3 kW) -------42
圖4-17基板溫度對薄膜電性之影響--------------------------------------43
圖4-18薄膜沉積於不同電暈功率處理的基板之光穿透率(基板溫度135 ℃)--------------------------------------------------------------------------44
圖4-19薄膜沉積於不同基板溫度之光穿透率(電暈功率3 kW)-----45
圖4-20 GAZO薄膜的光學能隙分析--------------------------------------46
圖4-21不同電暈功率之百格測試(基材溫度135 ℃)-----------------47

表目錄
表1.1玻璃基板與塑膠基板之物性比較表---------------------------------2
表1.2常用塑膠基板之物性比較表------------------------------------------2
表2-1常用塑膠基板的使用溫度比較表------------------------------------5
表2-2常用可撓基板之特性比較表------------------------------------------6
表2-3常用於高分子材料表面改質方法的比較表------------------------8
表2-4氧化鋅基本性質--------------------------------------------------------10
表2-5 GZO與AZO薄膜之物性比較--------------------------------------11
表2-6 GZO薄膜沉積於玻璃基板與塑膠基板的電性比較-------------15
表3.1電暈參數-----------------------------------------------------------------20
表3.2沉積GAZO薄膜之各項參數----------------------------------------25
表4-1經不同電暈功率處理後的PET性質-------------------------------36
表4-2不同基板溫度沉積GAZO薄膜性質----------------------------48
1. M.C. Choi, Y. Kim, C.S. Ha, “Polymers for flexible displays: From material selection to device applications”, Progress in Polymer Science, 33 (2008) 581-630.
2. H.U. Lee, S.Y. Park, Y.H. Kang, S.Y. Jeong, S.H. Choi, K.Y. Jahng, C.R. Cho, “Surface modification of and selective protein attachment to a flexible microarray pattern using atmospheric plasma with a reactive gast”, Acta Biomaterialia, 6 (2010) 519-525.
3. J.H. Lee, J.T. Song, “Dependence of the electrical and optical properties on the bias voltage for ZnO:Al films deposited by r.f. magnetron sputtering”, Thin Solid Films, 516 (2008) 1377-138.
4. F. Wu, L. Fang, Y.J. Pan, K. Zhou, L.P. Peng, Q.L. Huang, C.Y. Kong, “Seebeck and magnetoresistive effects of Ga-doped ZnO thin films prepared by RF magnetron sputtering”, Applied Surface Science, 255 (2009) 8855-8859.
5. H.M. Zhou, D.Q Yi, Z.M. Yu, L.R. Xiao, J. Li, “Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties”, Thin Solid Films, 515 (2007) 6909-6914.
6. V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, “Al-doped ZnO thin films by sol–gel method”, Surface and Coatings Technology, 180 –181 (2004) 659-662.
7. B.L. Zhu, X.H. Sun, X.Z. Zhao, F.H. Su, G.H. Li, X.G. Wu, J.Wu, R.Wu, J. Liu, “The effects of substrate temperature on the structure and properties of ZnO films prepared by pulsed laser deposition”, Vacuum, 82 (2008) 495-500.
8. B.D. Ahn, J.H. Kim, H.S. Kang, C. H. Lee, S.H. Oh, K.W. Kim, G.E. Jang, S.Y. Lee, “Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films”, Thin Solid Films, 516 (2008) 1382-1385.
9. C. Li, F.Y. Meng, S. Zhang, J.Q. Wang, “Effects of Mg content and B doping on structural, electrical and optical properties of Zn1-xMgxO thin films prepared by MOCVD”, Journal of Crystal Growth, 312 (2010) 1929-1934.
10. S.W. Shin, K.U. Sim, J.H. Moon, J.H. Kim, “The effect of processing parameters on the properties of Ga-doped ZnO thin films by RF magnetron sputtering”, Current Applied Physics, 10 (2010) S274-S277.
11. X.J. Wang, Q.S. Lei, W. Xu, W.L. Zhou, J. Yu, “Preparation of ZnO:Al thin film on transparent TPT substrate at room temperature by RF magnetron sputtering technique”, Materials Letters, 63 (2009) 1371-1373.
12. L. Gong, J. Lu, Z. Ye, “Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates”, Solar Energy Materials & Solar Cells (2010), doi:10.1016/j.solmat. 2010.02.026.
13. B. Houng, C.S. Hsi, B.Y. Hou, S.L. Fu, “Effect of process parameters on the growth and properties of impurity-doped zinc oxide transparent conducting thin films by RF magnetron sputtering”, Vacuum, 83 (2009) 534-539.
14. Y.C. Lin, M.Z. Chen, C.C. Kuo, W.T. Yen, “Electrical and optical properties of ZnO:Al film prepared on polyethersulfone substrate by RF magnetron sputtering”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 337 (2009) 52–56.
15. S. Fern?鴨dez, A. Mart?瀋ez-Steele, J.J. Gand?朦, F.B. Naranjo, “Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications”, Thin Solid Films, 517 (2009) 3152-3156.
16. 洪金賢,“軟性材料基板的介紹與應用”,工業材料雜誌, 243 (2007 ) 159-168。
17. N.A. Bailey, J.N. Hay, D.M. Price, “A study of enthalpic relaxation of poly(ethylene terephthalate) by conventional and modulated temperature DSC”, Thermochimica Acta, 367–368 (2001) 425-431.
18. 王孟菊、D. Mangindaan、郭瑋軒, “高分子材料表面處理與電漿技術應用”,化工技術,198 (2009) 98-109。
19. R.D. Pascoe, B.O. Connell, “Development of a method for separation of PVC and PET using flame treatment and flotation”, Minerals Engineering, 16 (2003) 1205-1212.
20. M. Sugawara, “Generation of a highly uniform and large area corona discharge source adaptable to surface treatment”, Surface and Coatings Technology, 142 144 (2001) 290-292.
21. T. Steckenreiter, E. Balanzat, H. Fuess, C. Trautmann, “Chemical modifications of PET induced by swift heavy ions”, Nuclear Instruments and Methods in Physics Research B, 131 (1997) 159-166.
22. J.W. Park, C.W. Sohn, B.H. Choi, “Some characteristics of materials surface-modified by ions beam bombardment”, Current Applied Physics, 6 (2006) 188-193.
23. M.H. Han, J.P. Jegal, K.W. Park, J.H. Choi, H.K. Baik, J.H. Noh, K.M. Song, Y.S. Lim, “Surface modification for adhesion enhancement of PET-laminated steel using atmospheric pressure plasma”, Surface and Coatings Technology , 201 (2007) 4948-4952.
24. L. Znaidi, G.J.A.A. Soler Illia, S. Benyahia, C. Sanchez, A.V. Kanaev, “Oriented ZnO thin films synthesis by sol–gel process for laser application ”, Thin Solid Films, 428 (2003) 257-262.
25. S.J. Pearton, D.P. Norton, K.Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, 50 (2005) 293-340.
26. J.N. Duenow, T.A. Gessert, D.M. Wood, D.L. Young, T.J. Coutts, “Effects of hydrogen content in sputtering ambient on ZnO:Al electrical properties”, Journal of Non-Crystalline Solids, 354 (2008) 2787-2790
27. K.U. Sim, S.W. Shin, A.V. Moholkar, J.H. Yun, J.H. Moon, J.H. Kim, “Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system”, Current Applied Physics (2010), doi:10.1016/j.cap.2010.02.028.
28. C.S. Hong, H.H. Park, J. Moon, H.H. Park, “Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films”, Thin Solid Films, 515 (2006) 957-960.
29. S.H. Park, J.B. Park, P.K. Song, “Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes”, Current Applied Physics (2010), doi:10.1016/j.cap.2010.02.028
30. J.H. Kim, B.D. Ahn, C.H. Kim, K.A. Jeon, H.S. Kang, S.Y. Lee, “Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters”, Thin Solid Films, 516 (2008) 1330-1333.
31. J.A. Thornton, “Influence of Apparatus Geometry and Deposition conditions on the Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci., Technol, 11(4) (1974) 666-670.
32. J.Y. Tseng, Y.T. Chen, M.Y. Yang, C.Y. Wang, P.C. Li, W.C. Yu, Y.F. Hsu, S.F. Wang, “Deposition of low-resistivity gallium-doped zinc oxide films by low-temperature radio-frequency magnetron sputtering”, Thin Solid Films, 517 (2009) 6310-6314.
33. J.P. Kim, S.A. Lee, J.S. Bae, S.K. Park, U.C. Choi, C.R. Cho, “Electric properties and surface characterization of transparent Al-doped ZnO thin films prepared by pulsed laser deposition”, Thin Solid Films, 516 (2008) 5223-5226.
34. http://www.porsh.idv.tw/archives/234
35. http://taobao.evolife.cn/?tag=%E6%A4%8D%E7%89%A9
36. http://www.oledw.com/news/200908/1611/
37. http://www.ledinside.com.tw/ge_oled_201004
38. http://eolbook.itri.org.tw/Event/event_more.asp?prnUjqzI#
39. http://www.keyence.com.tw/products/vision/microscope/vk9700/vk970 0.php
40. http://www.chuanhua.com.tw/ch-web/pdf/new/zehntner_zcc_zsh.pdf
41. N.L. Singh, A. Qureshi, N. Shah, A.K. Rakshit, S.Mukherjee, A. Tripathi, D.K.Avasthi, “Surfacemodification of polyethylene terephthalate by plasma treatment”, Radiation Measurements, 40 (2005) 746-749.
42. X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang, B.C. Yang, “Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering”, Optics Communications, 282 (2009) 247-252.
43. S. Fernandez, F.B. Naranjo, “Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications”, Solar Energy Materials and Solar Cells, 94 (2010) 157-163.
44. E. Fortunato, A. Goncalves, A. Marques, A. Viana, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, R. Martins, “New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering”, Surface and Coatings Technology, 180 -181 (2004) 2-25
45. S.S. Lina, J.L. Huanga, P. Sajgalik, “Effects of substrate temperature on the properties of heavily Al-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering”, Surface and Coatings Technology, 190 (2005) 39- 47.
46. B. Deng, Q. Wei, W. Gao, “Physical properties of Al-doped ZnO films deposited on nonwoven substrates by radio frequence magnetron sputtering”, Journal of Coatings Technology and Research, 5 (3) (2008) 393-397.
47. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties and electronic structure of amorphous germanium”, Physica Status Solidi, 15 (1966) 627-637
48. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition”, Journal of Applied Physics, 98 (2005) 013505.
49. Y.F. Lan, W.C. Peng, Y.H. Lo, J.L. He, “Durability under mechanical bending of the indium tin oxide films deposited on polymer substrate by thermionically enhanced sputtering”, Organic Electronics, 11 (2010) 670-676.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top