|
chapter 1 Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.45. [2] H.J. Moller, C. Funke, M. Rinio and S. Scholz, Multicrystalline silicon for solar cells” , Thin Solid Films 487 (2005), pp. 179–187. [3]Rech, B. and Wagner, H., 1999. Potential of amorphous silicon for solar cells. Appl. Phys. A 69, pp. 155–167. [4]Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar cell efficiency tables (version 37)”, Prog. Photovolt: Res. Appl. 2011; 19:84. [5]Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, Volume 93, Issues 6-7, June 2009, Pages 670-673 [6] D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon” , Appl. Phys. Lett. 85, 4061.
chapter 2 S. Martinuzzi, O. Palais, M. Pasquinelli, D. Barakel, and F. Ferrazza, “n-type multicrystalline silicon wafers for solar cells,” in Proc. 31st IEEE Photovoltaic Spec. Conf., 2005, pp. 919–922. [2] K. Bothe, J. Schmidt, and R.Hezel, “Effective reduction of metastable defect concentration in Boron-doped Chochralski silicon for solar cells,” in Proc. 29th Photovoltaic Spec. Conf., 2002, pp. 194-197. [3] S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, “Minority carrier lifetime degradation in boro-doped Czochralski silicon“, Journal of Applied Physics 90, 2001, pp. 2397-2404. [4] J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology (Prentice–Hall, Upper Saddle River, NJ, 2000), Chap. 8. [5] Yuan Taur, Tak H Ning, “ Fundamentals of modern VLSI devices”, p16. [6]International Standard, IEC 60904–3, Edition 2, 2008. Photovoltaic devices—Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. ISBN 2–8318–9705-X, International Electrotechnical Commission, April, 2008. [7]Hitoshi SAI, Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA, Yoshiaki KANAMORI, Hiroo YUGAMI, and Masafumi YAMAGUCHI, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells”, Jpn. J. Appl. Phys., Vol. 46, No. 6A (2007) [8]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471. [9]J. Zhao, M. A. Green, F. Ferrazza, “Novel 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1998, pp. 1991-1993. [10]O. Schultz, A. Mette, M. Hermie and S.W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology”, Progress in Photovoltaics: Research and Applications 16, 2008, pp. 317-324. [11]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471. [12]Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.103 chapter 3
W. Sparber, O. Schult, D. Birol, G. Emanuel, R. Preu'', A. Podde'', D. Borchert, “COMPARISON OF TEXTURING METHODS FOR MONOCRYSTALLINE SILICON SOLAR CELLS USING KOH AND Na2C03”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18, 2003 Osaka, Japan [2]A.G. Aberle, “Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis Centre for Photovoltaic Engineering”, University of New South Wales, Sydney, Australia (1999). [3]J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters”, Applied Physics Letters 92 (2008) 253504. [4]Tutorials of 19th International Photovoltaic Science and Engineering Conference and Exhibition [5]B. Hoex, J. Schmidt, P. Pohl, M. C. M. d. Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”, J. Appl. Phys. 104, 044903 (2008). [6]Ronald A. Sinton, Andres Cuevas, “Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett. 69 (17), 21 October 1996. [7]Jed Brody, Ajeet Rohatgi, Alan Ristow, “Review and comparison of equations relating bulk lifetime and surface recombination velocity to effective lifetime measured under flash lamp illumination”, Solar Energy Materials & Solar Cells 77 (2003) 293–301. [8]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471. [9]E.H Nicollian, J.R Brews, MOS(Matal-Oxide-Semiconductor) Physics and Technology, Wiley/Interscience, 1981 [10]M, cho, H,B, Park, J. Park, C,S, Hwang, “ Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates” J.Appl, Phys. 2003, Vol 94 [11]B.Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden and W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivation by plasma-assisted atomic layer deposited Al2O3”, Applied Physics Letters 89 (2006) 042112. [12]J. Benick, A. Richter, T.-T.A. Li, N.E. Grant, K.R. McIntosh, Y. Ren, K.J. Weber,M. Hermle, S.W. Glunz, “Effect of a post-deposition anneal on Al2O3/Si interface properties“, 35th IEEE Photovoltaic Specialists Conference, PVSC 2010. Vol.2 : Honolulu, Hawaii, USA, 20 - 25 June 2010 [13]W. M. M. Kessels, et al., in: Proceedings of the 33rd IEEE Photovoltaics Specialists Conference, San Diego, USA,2008, pp. 1–5. [14]T.-T. Li and A. Cuevas, “Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide“, Physica Status Solidi RRL 3 (2009) 160. [15]J. Rentsch, F. Binaie, C. Schetter, R. Preu, H. Schlemm, K. Roth, D. Theirich, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, pp. 891–894. [16]F. Delahaye, M. Lo‥ hmann, M. Bauer, G. Vilsmeier, I. Melnyk, A. Hauser, C. Gerhards, M. Krause, S. Lust, H. NuXbaumer, W. Joos, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, p. 416–418. [17]E. Schneiderlchner, D.H. Neuhaus, F. Schitthelm, D. Hubatsch, R. Ludemann, in: Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006, pp. 923–925.
chapter 4 Qi Wang, M. R. Page, E. Iwaniczko, Yueqin Xu, L. Roybal, R. Bauer, B. To, H.-C. Yuan, A. Duda, F. Hasoon, Y. F. Yan, D. Levi, D. Meier, Howard M. Branz, and T. H. Wang, “Efficient heterojunction solar cells on p-type crystal silicon wafers”, Appl. Phys. Lett. 96, 013507, 2010. [2]Jeffery L. Gray, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.90-p92. [3]Michael P. Godlewski, Cosmo R. Baraona and Henry W. Brandhorst Jr., Low-High Junction Theory Applied to Solar Cells, IEEE Catalog No. 73CH0801-ED, Conf. Rec. 10th IEEE Photovoltaic Specialist Conf. (1973), pp. 40–49. [4]Oldwig von Roos “A simple theory of back surface field (BSF) solar cells” J. Appl. Phys, Vol.49, pp.3503-3511, 1978. [5]Kanevce A and Metzger “The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells” J. Appl. Phys, 105,094507 (2009)
|