跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昱閎
研究生(外文):Yu-Hung Huang
論文名稱:N型矽基板之同質與異質接面太陽能電池
論文名稱(外文):N-type silicon based homojunction and heterojunction solar cells
指導教授:劉致為
口試委員:張廖貴術林中一郭宇軒張書通
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:75
中文關鍵詞:n型矽基鈍化原子層沉積準穩態光導異質接面薄本質層
外文關鍵詞:n-type silicon basedpassivationALDQSSPCHIT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於矽晶太陽能電池的穩定性以及高轉換效率,使矽晶太陽能電池在太陽能產業上佔了極大部分,雖然此技術在量產上的結構已經發展的很完整,但是在高轉換效率的技術上能存在許多的挑戰。
本論文中,N型矽基板上同質接面太陽能電池的製程是利用離子佈值技術來製作射極(硼)以及背面電場(磷)。利用合適的退火條件,離子佈值中摻雜離子可以被活化;且佈值中造成的損害可以被修復。本論文中研究包含快速熱退火以及爐管退火。快速熱退火製程轉換效率為14.5%而爐管熱退火製程效率為15.4%。此外,為了更佳的效率,電極的製作、材料,以及電極的厚度條件都予以考慮。因此,在本論文中設計了不同在沉積電極後的退火條件以及不同電極材料、厚度的實驗。
另外,由於表面鈍化對於開路電壓有極大的影響關係進而影響太陽能電池轉換效率,因此表面鈍化是十分重要的。利用準穩態光導量測比較不同沉積法的氧化鋁(Al2O3)層之鈍化能力,而較高的有效載子生命周期代表較佳的鈍化能力。此外,準穩態光導量測也提供預估形成介面後太陽能電池的暗示開路電壓之一種方法。利用原子層沉積氧化鋁出色的鈍化能力,本論文中最高轉換效率超過16%。
最後,N型矽基HIT結構太陽能電池達到的轉換效率為11.1%,以此討論非晶矽射極的優點以及適當的後退火條件。


Wafer based solar cell accounts for the production of a large part in photovoltaic industry due to its stability and high efficiency. Although the technology of wafer based solar cell has been well-developed for conventional structure, there are still numerous new challenges existing for high efficiency solar cell.
In this thesis, the fabrication process of n-type silicon based homojunction solar cell is demonstrated by using ion implantation to form the boron (p+) emitter and phosphorous (n+) back surface field. By using appropriate annealing condition, The implanted dopants and damage introduced by implantation can be activated and repaired, respectively. Both rapid thermal annealing (RTA) and furnace annealing were investigated within this work. The efficiency is 14.5% by RTA process and 15.8% by furnace annealing process. Moreover, contact formation, contact material, and contact thickness conditions are taken into consideration for better efficiency. Therefore, experiments of various annealing conditions in forming gas after depositing contact, different material, and the thickness of contact are designed in this work.
Next, surface passivation is very important for solar cell efficiency due to its strong dependence on open circuit voltage so it affects solar cell efficiency. Aluminum oxide (Al2O3) layers deposited by different method are compared for passivation ability by using quasi-steady-state photoconductance and photoluminescence (QSSPC) measurement.
It means better passivation ability to passivate solar cell for higher effective carrier lifetime. In addition, QSSPC measurement also provide a way to estimating the implied open circuit voltage after forming the junction of solar cells. With the excellent passivation of Al2O3 deposited by atomic layer deposition (ALD), the efficiency more than 16% is shown in this work.
Finally, the n-type silicon HIT solar cell with 11.1% efficiency is demonstrated to discuss the benefits from amorphous silicon emitter and suitable PDA condition.

Contents
List of Figures VI

List of Tables VIII
Chapter 1 Introduction
1.1 Background and Motivation 1
1.2 Organization 3
References 4


Chapter 2
N-type crystalline silicon solar cell with wet oxide passivation
2.1 Introduction 5
2.2 Rapid thermal annealing (RTA) n-type crystalline silicon solar cell 6
2.3 Furnace annealing n-type crystalline silicon solar cell with wet oxide passivation 13
2.4 Effect of different contact formation on efficiency 19
2.5 Summary 24
References 25

Chapter 3
Al2O3 passivated boron emitters on n-type Si solar cells
3.1 Introduction 27
3.2 Mechanism and characterization of surface passivation 28
3.3 Investigation of various surface passivation schemes and formation 32
3.4 Fabrication and analysis of Al2O3 passivated boron emitter solar cell 40
3.5 Summary 51
References 52

Chapter 4
N-type silicon HIT solar cell
4.1 Introduction 55
4.2 Fabrication of n-type silicon HIT solar cell 55
4.3 Analysis of different treatment for n-type HIT solar cell 61
4.4 Summary 68
References 69

Chapter 5
Summary and Future Work
5.1 Summary 71
5.2 Future work 72


chapter 1
Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.45.
[2] H.J. Moller, C. Funke, M. Rinio and S. Scholz, Multicrystalline silicon for solar
cells” , Thin Solid Films 487 (2005), pp. 179–187.
[3]Rech, B. and Wagner, H., 1999. Potential of amorphous silicon for solar cells. Appl. Phys. A 69, pp. 155–167.
[4]Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar cell efficiency tables (version 37)”, Prog. Photovolt: Res. Appl. 2011; 19:84.
[5]Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, Volume 93, Issues 6-7, June 2009, Pages 670-673
[6] D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and
other transition metal point defects in p- and n-type crystalline silicon” , Appl. Phys. Lett. 85, 4061.

chapter 2
S. Martinuzzi, O. Palais, M. Pasquinelli, D. Barakel, and F. Ferrazza, “n-type
multicrystalline silicon wafers for solar cells,” in Proc. 31st IEEE Photovoltaic
Spec. Conf., 2005, pp. 919–922.
[2] K. Bothe, J. Schmidt, and R.Hezel, “Effective reduction of metastable defect
concentration in Boron-doped Chochralski silicon for solar cells,” in Proc. 29th
Photovoltaic Spec. Conf., 2002, pp. 194-197.
[3] S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, “Minority carrier lifetime
degradation in boro-doped Czochralski silicon“, Journal of Applied Physics 90, 2001, pp. 2397-2404.
[4] J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology
(Prentice–Hall, Upper Saddle River, NJ, 2000), Chap. 8.
[5] Yuan Taur, Tak H Ning, “ Fundamentals of modern VLSI devices”, p16.
[6]International Standard, IEC 60904–3, Edition 2, 2008. Photovoltaic devices—Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. ISBN 2–8318–9705-X, International Electrotechnical Commission, April, 2008.
[7]Hitoshi SAI, Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA, Yoshiaki KANAMORI, Hiroo YUGAMI, and Masafumi YAMAGUCHI, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells”, Jpn. J. Appl. Phys., Vol. 46, No. 6A (2007)
[8]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on
MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471.
[9]J. Zhao, M. A. Green, F. Ferrazza, “Novel 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1998, pp. 1991-1993.
[10]O. Schultz, A. Mette, M. Hermie and S.W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology”, Progress in Photovoltaics: Research and Applications 16, 2008, pp. 317-324.
[11]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on MCZ
substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471.
[12]Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003,
p.103
chapter 3

W. Sparber, O. Schult, D. Birol, G. Emanuel, R. Preu'', A. Podde'', D. Borchert, “COMPARISON OF TEXTURING METHODS FOR MONOCRYSTALLINE SILICON SOLAR CELLS USING KOH AND Na2C03”, 3rd World Conference on Photovoltaic Energy Conversion May 11-18, 2003 Osaka, Japan
[2]A.G. Aberle, “Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis Centre for Photovoltaic Engineering”, University of New South Wales, Sydney, Australia (1999).
[3]J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and
S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron
emitters”, Applied Physics Letters 92 (2008) 253504.
[4]Tutorials of 19th International Photovoltaic Science and Engineering Conference and Exhibition
[5]B. Hoex, J. Schmidt, P. Pohl, M. C. M. d. Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”, J. Appl. Phys. 104, 044903 (2008).
[6]Ronald A. Sinton, Andres Cuevas, “Contactless determination of current–voltage
characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett. 69 (17), 21 October 1996.
[7]Jed Brody, Ajeet Rohatgi, Alan Ristow, “Review and comparison of equations relating bulk lifetime and surface recombination velocity to effective lifetime measured under flash lamp illumination”, Solar Energy Materials & Solar Cells 77 (2003) 293–301.
[8]J. Zhao, A. Wang and M. A. Green, “24•5% Efficiency silicon PERT cells on
MCZ substrates and 24•7% efficiency PERL cells on FZ substrates”, Prog. Photovoltaics 7, 1999, pp. 471.
[9]E.H Nicollian, J.R Brews, MOS(Matal-Oxide-Semiconductor) Physics
and Technology, Wiley/Interscience, 1981
[10]M, cho, H,B, Park, J. Park, C,S, Hwang, “ Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates” J.Appl, Phys. 2003, Vol 94
[11]B.Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden and W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivation by plasma-assisted atomic layer deposited Al2O3”, Applied Physics Letters 89 (2006) 042112.
[12]J. Benick, A. Richter, T.-T.A. Li, N.E. Grant, K.R. McIntosh, Y. Ren, K.J. Weber,M. Hermle, S.W. Glunz, “Effect of a post-deposition anneal on Al2O3/Si interface properties“, 35th IEEE Photovoltaic Specialists Conference, PVSC 2010. Vol.2 : Honolulu, Hawaii, USA, 20 - 25 June 2010
[13]W. M. M. Kessels, et al., in: Proceedings of the 33rd IEEE Photovoltaics Specialists Conference, San Diego, USA,2008, pp. 1–5.
[14]T.-T. Li and A. Cuevas, “Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide“, Physica Status Solidi RRL 3 (2009) 160.
[15]J. Rentsch, F. Binaie, C. Schetter, R. Preu, H. Schlemm, K. Roth, D. Theirich, in:
Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, pp. 891–894.
[16]F. Delahaye, M. Lo‥ hmann, M. Bauer, G. Vilsmeier, I. Melnyk, A. Hauser, C. Gerhards, M. Krause, S. Lust, H. NuXbaumer, W. Joos, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, p. 416–418.
[17]E. Schneiderlchner, D.H. Neuhaus, F. Schitthelm, D. Hubatsch, R. Ludemann, in: Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006, pp. 923–925.

chapter 4
Qi Wang, M. R. Page, E. Iwaniczko, Yueqin Xu, L. Roybal, R. Bauer, B. To, H.-C. Yuan, A. Duda, F. Hasoon, Y. F. Yan, D. Levi, D. Meier, Howard M. Branz, and T. H. Wang, “Efficient heterojunction solar cells on p-type crystal silicon wafers”, Appl. Phys. Lett. 96, 013507, 2010.
[2]Jeffery L. Gray, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.90-p92.
[3]Michael P. Godlewski, Cosmo R. Baraona and Henry W. Brandhorst Jr., Low-High Junction Theory Applied to Solar Cells, IEEE Catalog No. 73CH0801-ED, Conf. Rec. 10th IEEE Photovoltaic Specialist Conf. (1973), pp. 40–49.
[4]Oldwig von Roos “A simple theory of back surface field (BSF) solar cells” J. Appl. Phys, Vol.49, pp.3503-3511, 1978.
[5]Kanevce A and Metzger “The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells” J. Appl. Phys, 105,094507 (2009)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊