跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李仲翔
研究生(外文):Li, Zhong-Xiang
論文名稱:生物程序影響腐植質光學特性以及結合金屬特性研究
論文名稱(外文):Metal Distribution in Humic Substances Affected By Biological Prcess
指導教授:陳庭堅
指導教授(外文):Chen, Ting-Chien
口試委員:葉桂君葉一隆康佩群
口試委員(外文):Yeh, Kuei-JyumYeh, Yi-LungKang,Pei-Qun
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:111
中文關鍵詞:濕地堆肥重金屬生物程序分配係數
外文關鍵詞:WetlandscompostHeavy metalsBiological processDistribution coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
農作廢棄物以及動物排泄物經過適當處理,當作土壤肥料避免長期耕作導致土壤肥力喪失。廢棄物經腐植化處理後,形成堆肥(compost)。人工濕地也是一種生物處理程序,可以改變溶解性有機質(DOM)的特性。本研究探討雞糞經堆肥處理以及濕地進出流水,堆肥腐植質(HS)與溼地DOM之光學化學特性與金屬濃度。另外堆肥HS分離為3種分子量以及濕地DOM分離為6種分子量溶液,分子量>1 kDa稱為膠體、< 1 1 kDa稱為真溶解相,HS與DOM各分子量溶液量測DOC與金屬濃度和光學性質,分析金屬不同分子量與真溶解相之分佈與分配。堆肥隨腐植程序演進大部分金屬全量上升。溼地進出流水部分金屬濃度的改變趨勢相反。堆肥HS與溼地DOM之OC質量以大分子量與真溶解相較高,而金屬Fe、Mn分配在大分子量( >100kDa)為主,其餘金屬則以真溶解相( <1kDa)為主。濕地DOM與堆肥HS金屬分配係數值> 1,代表金屬較容易分配於膠體上。
金屬與光學性質之趨勢堆肥與冬季濕地之相關性有相同之趨勢,顯示兩者DOM與金屬之分配特性與有機物變化趨勢相同。

With appropriate treatment, agricultural waste and animal manure can be used as soil fertilizer, which avoids the loss of soil fertility during long-term cultivation. The humified wastes generate compost. In addition, a constructed wetland (CW) treatment is regarded as one of several biological treatment processes that can beneficially change the characteristics of dissolved organic matter (DOM). This study investigated optical characteristics and metal concentrations of composted humic substances (HS) in chicken manure as well as DOM in a CW.
The composted HS solutions were separated into three molecular weights (MWs); the CW water samples were separated into six MWs. Molecular weight >1 kDa for HS and DOM was called the colloids and MW < 1 kDa was called the truly dissolved phase. Bulk and individual MW HS and DOM were measured for dissolved organic carbon (DOC), metal concentrations, and optical characteristics. The metal distribution and partition coefficients were calculated between colloids and the truly dissolved phases. The metal concentrations increased following compost evolution, but metal concentrations after CW evolution had the opposite tendency. The high molecular weight phase had a high OC mass fraction in the composted HS whereas the truly dissolved phase had a high OC mass fraction in CW DOM. Metals Fe and Mn were mainly distributed in the high molecular weight fraction (>100 kDa), but other metals were distributed in the truly dissolved phase (<1 kDa). The metal distribution coefficients were > 1 for CW DOM and the composted HS, which suggested metals were likely to distribute on the colloids. The correlation of metal with optical characteristics had the same tendency for composted HS and CW DOM in winter, which demonstrated HS and DOM change and metal distribution had the same tendency.

摘要 II
Abstract III
謝誌 V
目錄 6
表目錄 10
圖目錄 12
第一章前言 15
1.1研究緣起 15
1.2研究目的 16
第二章文獻回顧 17
2.1堆肥簡介 17
2.2人工溼地 18
2.3溶解性有機質 19
2.4 腐植質 19
2.5分配係數 20
第三章材料與方法 21
3.1樣品來源 21
3.2實驗藥品與器材 24
3.2.1藥品與器材 24
3.2.2實驗儀器設備 24
3.3實驗流程 25
3.4實驗方法 29
3.4.1 pH值測定 29
3.4.2 溶氧測定 29
3.4.3懸浮固體(Suspended solid,SS) 29
3.4.4總懸浮固體(Total Suspended Solids,TSS) 29
3.4.5 固體有機質(OM) 30
3.4.6 水中總有機碳測定(溶解性有機碳,DOC) 30
3.5堆肥中有機質的萃取與分離程序 30
3.5.1 NaOH萃取 30
3.5.2 物理性分離 30
3.6濕地分離程序 31
3.7螢光光譜儀分析 31
3.8螢光區域積分法(Fluorescence regional integration, FRI) 33
3.9金屬元素分析 36
3.9.1 王水消化法 36
3.9.2 金屬濃度測定 36
3.10數據統計與分析 36
第四章結果與討論 37
4.1基本性質測定 37
4.1.1堆肥溫度、pH值、OM測定 38
4.1.2 濕地溫度、pH值、DO、SS及TSS測定 38
4.2溶解性有機碳(DOC)特性測定 39
4.2.1 堆肥DOC特性測定 39
4.2.2 濕地DOC特性測定 40
4.3金屬濃度分析 42
4.3.1 堆肥金屬濃度分析 44
4.3.2 濕地金屬濃度分析 50
4.4堆肥HS萃取液與濕地金屬與有機碳分佈分析 53
4.4.1 堆肥HS萃取液金屬與有機碳分佈分析 53
4.4.2 濕地金屬與有機碳分佈分析 61
4.5金屬分配係數 67
4.5.1 堆肥金屬分配係數 68
4.5.2 濕地金屬分配係數 70
4.6螢光指標 72
4.6.1堆肥螢光指標 72
4.6.2 濕地螢光指標 74
4.7螢光物種測定與螢光區域積分法 77
4.7.1 堆肥HS萃取液螢光物種測定與FRI區域變化 79
4.7.2 濕地溶液螢光物種測定與FRI區域變化 84
4.8金屬有機碳分佈、螢光指標及螢光區域相關性分析 91
4.8.1 堆肥金屬有機碳分佈、螢光指標及螢光區域相關性分析 91
4.8.2 濕地金屬有機碳分佈、螢光指標及螢光區域相關性分析 94
第五章結論與建議 104
5.1 結論 104
5.2建議 105
參考文獻 106
作者簡介 111

1. 王鐘和, 2000, "有機農業之養分管理," 輔導有機農業經營作物有機栽培應用技術:, No. pp. 35-42。
2. 行政院農委會,2008,禽畜糞堆肥的製作及施用手冊。
3. 行政院永續公共工程委員會,2015,永續公共工程網站。
4. 行政院環境保護署環境檢測所,2012,火焰式原子吸收光譜法,NIEA M111.01C。
5. 行政院環境保護署環境檢測所,2003,石墨爐式原子吸收光譜法,NIEA M113.00C。
6. 行政院環境保護署環境檢測所,2013,感應耦合電漿原子發射光譜法,NIEA M104.02C。
7. 行政院環境保護署環境檢測所,2000,水中總有機碳檢測方法-燃燒/紅外線測定法,NIEA W530.51C。
8. 李丁來、黃志彬,2006 "淨水程序中溶解性有機物之去除: 生物濾床及污泥毯澄清池之操作評估,"。
9. 周明玄,2011,鴛鴦湖湖水溶解性有機碳之來源探討,碩士論文,國立台灣大學,生態學與演化生物學研究所,台北。
10. 單明陽、李振卿,2006,「河川水質淨化工法效益分析」,科技與管理研討會,387-397 頁。
11. 經濟部工業局,2005,堆肥技術與設備手冊及案例彙編。
12. 蘇彥瑋,2012,底泥萃取腐植質特性與結合雌激性化合物探討,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
13. Anderson, P. and Christensen, T. H., 1988, "Distribution coefficients of Cd, Co, Ni, and Zn in soils," Journal of soil science, Vol. 39, No. 1, pp. 15-22.
14. Bilal, M., Jaffrezic, A., Dudal, Y., Le Guillou, C., Menasseri, S., and Walter, C., 2010, "Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study," Journal of agricultural and food chemistry, Vol. 58, No. 5, pp. 3093-3100.
15. Birdwell, J. E. and Engel, A. S., 2010, "Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy," Organic Geochemistry, Vol. 41, No. 3, pp. 270-280.
16. Burdige, D. J., Kline, S. W., and Chen, W., 2004, "Fluorescent dissolved organic matter in marine sediment pore waters," Marine Chemistry, Vol. 89, No. 1, pp. 289-311.
17. Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K., 2003, “Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter,” Environmental Science & Technology, Vol. 37, No. 24, pp. 5701-5710.
18. Croué, J.-P., Benedetti, M., Violleau, D., and Leenheer, J., 2003, "Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site," Environmental science & technology, Vol. 37, No. 2, pp. 328-336.
19. Fornes, F., Mendoza-Hernández, D., García-de-la-Fuente, R., Abad, M., and Belda, R. M., 2012, "Composting versus vermicomposting: a comparative study of organic matter evolution through straight and combined processes," Bioresource Technology, Vol. 118, No. pp. 296-305.
20. Frimmel, H. and Frank, W., 1998, "Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa," Precambrian Research, Vol. 90, No. 1, pp. 1-28.
21. Garcia, C., Moreno, J., Hernandez, T., Costa, F., and Polo, A., 1995, "Effect of composting on sewage sludges contaminated with heavy metals," Bioresource technology, Vol. 53, No. 1, pp. 13-19.
22. Golebiowska, D., Mielnik, L., and Gonet, S., 1996, "Characteristics of humic acids in bottom sediments of Lobelia lakes," Environment international, Vol. 22, No. 5, pp. 571-578.
23. Guangwei, Y., Hengyi, L., Tao, B., Zhong, L., Qiang, Y., and Xianqiang, S., 2009, "In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments," Journal of Environmental Sciences, Vol. 21, No. 7, pp. 877-883.
24. Haitzer, M., Aiken, G. R., and Ryan, J. N., 2003, "Binding of mercury (II) to aquatic humic substances: Influence of pH and source of humic substances," Environmental science & technology, Vol. 37, No. 11, pp. 2436-2441.
25. He, M.-m., Tian, G.-m., and Liang, X.-q., 2009, "Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge," Journal of Hazardous Materials, Vol. 163, No. 2, pp. 671-677.
26. He, X.-S., Xi, B.-D., Wei, Z.-M., Jiang, Y.-H., Yang, Y., An, D., Cao, J.-L., and Liu, H.-L., 2011, "Fluorescence excitation–emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates," Journal of hazardous materials, Vol. 190, No. 1, pp. 293-299.
27. Hornick, H., Sikora, L., and Sterrett, S., 1984, "Utilization of sewage sludge compost as a soil conditioner and fertilizer for plant growth," RP, No.
28. Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.-M., and Parlanti, E., 2009, "Properties of fluorescent dissolved organic matter in the Gironde Estuary," Organic Geochemistry, Vol. 40, No. 6, pp. 706-719.
29. Hur, J. and Kim, G., 2009, "Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors," Chemosphere, Vol. 75, No. 4, pp. 483-490.
30. Hur, J., Lee, D.-H., and Shin, H.-S., 2009, "Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments," Organic Geochemistry, Vol. 40, No. 10, pp. 1091-1099.
31. Lapworth, D. J. and Kinniburgh, D., 2009, "An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs)," Computers and Geosciences, Vol. 35, No. 10, pp. 2160-2163.
32. Ma, H., Allen, H. E., and Yin, Y., 2001, "Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent," Water research, Vol. 35, No. 4, pp. 985-996.
33. Martin, J. M., Dai, M. H., and Cauwet, G., 1995, "Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy)," Limnology and Oceanography, Vol. 40, No. 1, pp. 119-131.
34. McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T., 2001, "Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity," Limnology and Oceanography, Vol. 46, No. 1, pp. 38-48.
35. Mohee, R. and Soobhany, N., 2014, "Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present," Resources, Conservation and Recycling, Vol. 92, No. pp. 206-213.
36. Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M., 2000, "Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs," Organic Geochemistry, Vol. 31, No. 12, pp. 1765-1781.
37. Raut, M., William, S. P., Bhattacharyya, J., Chakrabarti, T., and Devotta, S., 2008, "Microbial dynamics and enzyme activities during rapid composting of municipal solid waste–a compost maturity analysis perspective," Bioresource Technology, Vol. 99, No. 14, pp. 6512-6519.
38. Rav-Acha, C. and Rebhun, M., 1992, "Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment," Water Research, Vol. 26, No. 12, pp. 1645-1654.
39. Shaheen, S. M., Tsadilas, C. D., and Rinklebe, J., 2013, "A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties," Advances in colloid and interface science, Vol. 201, No. pp. 43-56.
40. Singh, J. and Kalamdhad, A. S., 2012, "Concentration and speciation of heavy metals during water hyacinth composting," Bioresource technology, Vol. 124, No. pp. 169-179.
41. Steinberg, C., 2003, Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches, Springer.
42. Sutton, R. and Sposito, G., 2005, "Molecular structure in soil humic substances: the new view," Environmental Science & Technology, Vol. 39, No. 23, pp. 9009-9015.
43. Tandy, S., Healey, J., Nason, M., Williamson, J., and Jones, D., 2009, "Heavy metal fractionation during the co-composting of biosolids, deinking paper fibre and green waste," Bioresource technology, Vol. 100, No. 18, pp. 4220-4226.
44. Thurman, E. M., 1985, Organic geochemistry of natural waters, Kluwer Academic Pub.
45. Troy, S. M., Nolan, T., Kwapinski, W., Leahy, J. J., Healy, M. G., and Lawlor, P. G., 2012, "Effect of sawdust addition on composting of separated raw and anaerobically digested pig manure," Journal of environmental management, Vol. 111, No. pp. 70-77.
46. Wu, F., Cai, Y., Evans, D., and Dillon, P., 2004, "Complexation between Hg (II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy," Biogeochemistry, Vol. 71, No. 3, pp. 339-351.
47. Zhang, L., Li, A., Lu, Y., Yan, L., Zhong, S., and Deng, C., 2009, "Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration," Waste Management, Vol. 29, No. 3, pp. 1035-1040.
48. Zheng, G.-D., Gao, D., Chen, T.-B., and Luo, W., 2007, "Stabilization of nickel and chromium in sewage sludge during aerobic composting," Journal of hazardous materials, Vol. 142, No. 1, pp. 216-221.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊