跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡定裕
研究生(外文):Din-Yu Tsai
論文名稱:以密閉式藻類毒性試驗方法評估芳香醛(苯甲醛)之毒性與結構-活性關係之研究
論文名稱(外文):The Study of Toxicity Assessment of Aromatic Aldehydes(Benzaldehydes) Using a Closed-System Algal Test and The Quantitative Structure-Activity Relationship
指導教授:陳重元
指導教授(外文):Chung-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:129
中文關鍵詞:月芽藻QSAR苯甲醛半影響濃度(EC50)
外文關鍵詞:Pesudokirchneriella subcapitataQSARBenzaldehydesMedian effective concentration(EC50)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
此篇研究以20種芳香醛(苯甲醛)針對月芽藻 (Pseudokirchneriellasubcapitata)所進行之48小時密閉式毒性試驗。實驗所得到之結果,將利用藻細胞的數量變化 (Final yield)做為觀測終點,藉由Probit模式求出半致死濃度 (50% Effect concentration,EC50),將其毒性試驗後所得到的log(1/EC50),與其物化參數(包括log Kow和ELUMO)進行回歸分析,找出毒性方程式。
其結果顯示三種苯甲醛(苯甲醛、香草醛及3,4-二烴基苯甲醛)會與藻種行歧化作用(dismutation)。此作用會造成苯甲醛轉化為苯甲酸之過程中行耗氧作用,因而減少溶氧產生量並降低其毒性。 而在不同烴基苯甲醛之毒性中,以5-溴-2-烴基其毒性最毒。除了3-溴-4-烴基苯甲醛之外,其他位於對位(para-)之烴基苯甲醛其毒性皆比鄰位(ortho-)低。
針對低影響濃度(NOEC、LOEC、EC10、NEC)進行敏感性之比較,其結果: NOEC > EC10 > NEC > LOEC。在本研究之三種反應終點當中對於苯甲醛類之敏感性最高者為細胞密度變化量,其次為溶氧產生量,而敏感性最差之反應終點為生長率。與其他生物種進行比較可以發現本研究之藻類其敏感性最高、其他依序為鰷魚、水蚤、海洋性發光菌,敏感性最差者為纖毛蟲。
另一方面,由結果亦可發現在烴基苯甲醛中,其毒性易高對於其他苯甲醛類。再將8種烴基苯甲醛利用logKow進行QSAR之回歸分析,可以發現有一個outlier (2,5-dihydroxybenzaldehyde),若將此點去除後再進行迴歸即可得到較好之QSAR模式。而以反應終點為生長率所建立之QSAR模式有較精確之預測能力。
The objective of this study is to study the toxic effect of aromatic aldehydes (benzaldehyde) on Pseudokirchneriella subcapitata using a closed system test. The effects of benzaldehydes were evaluated by three kinds of response endpoints, i.e., cell density, algal growth rate, and the dissolved oxygen production. Median effective concentratons (EC50s) were estimated using the Probit model with a test duration of 48hr. The quantitative structure-activity relationships (QSARs) were established based on the 1-octanol/water partition coefficient (logKow) and an electronic parameters-Lowest unoccupied molecular orbit (ELUMO).
The result shows that the algae would make three types of benzaldehydes (benzaldehdye、vanillin and 3,4-dihydroxybenzaldehyde) into benzoic acid, and this reaction is called the dismutation. Special attention should be paid to that the oxygen produced by algae and toxicity of benzaldehydes will be decreased in the dismutation. The highest toxicity in different kinds of hydroxyl- benzaldehydes is 5-bromo-2-hydroxybenzaldehyde. In addition, the toxicity of para-hydroxy-benzaldehydes is lower than that of ortho-hydroxy- benzalde- hydes, exept 3-bromo-4-hydroxybenzaldehyde.
The results also reveal that the value of the lower effect concentration (EC10、LOEC、NOEC and NEC) of the benzaldehydes is NOEC <EC10< NEC<LOEC. This demonstrates that the relative sensitivity is NOEC >EC10> NEC>LOEC. Besides, the experiment results (EC50) are compared with literature data derived by various toxicity tests. The order of the relative sensitivity is then obtained as follows : algae(Final yield)>algae(DO prod- uction)>algae(Grwoth rate)>Fathead minnow>Daphnia magna> Microtox >Tetrahymena pyriformis.
On the other hand, the toxicity of hydroxy-benzaldehydes is demonstrated to be higher than that of other benzaldehydes, and a single parameter (logKow) is used to estabilish QSAR of the hydroxy-benzaldehydes, except the one outlier (2,5-dihydroxybenzaldehyde).[log(1/EC50)G.R = 0.8457X - 0.34 96, R2 = 0.9152, n=7]
第一章、緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究方法及架構 4
第二章、文獻回顧 6
2.1 毒性物質-醛及苯甲醛之介紹 6
2.1.1 醛的定義 6
2.1.2 醛的來源 6
2.1.3 醛類化合物之物化性質 7
2.1.4 醛類化合物之毒性作用機制 7
2.2 常用的毒性試驗物種 8
2.2.1 Microtox 測試 9
2.2.2 Polytox 測試 9
2.2.3 水蚤(Daphnia)測試 10
2.2.4 纖毛蟲(Tetrahymena pyriformis)測試 10
2.2.5 植物及藻類測試 11
2.3 藻類毒性試驗 11
2.3.1 試驗物種簡介 11
2.3.2 藻類計數方法 12
2.3.3 藻類毒性試驗 13
2.3.4 試驗之重要參數 16
2.3.5 觀測終點(End point)之量測 21
2.3.6 揮發性有機物實驗 21
2.4 有機物結構與毒性之關係 22
2.5 定量結構-反應關係(QSAR) 23
2.5.1 QSAR之簡介 23
2.5.2 常用之QSAR參數 25
2.5.3 QSAR在環境毒物學上的應用 28
2.6 化合物作用的毒性機制 30
2.7 Surrogate於環境毒理學上的應用 31
2.8 Acute and Chronic Ratio ( ACR ) 32
2.9 Solvent control 34
第三章、基本理論 36
3.1 毒性試驗終點種類 36
3.2 常用的單一毒性模式 37
3.3 基本生長動力學 40
3.4 模式最佳化選擇 42
3.5 NOEC與Cut-Off value 42
3.5.1 判定NOEC和LOEC 42
3.5.2 平均中斷值(Cut-Off value) 43
3.5.3 NEC 43
第四章、實驗設備與方法 46
4.1 實驗設備及材料 46
4.2 毒性試驗藻種 54
4.3 實驗前準備 54
4.3.1 培養基質的配製 54
4.3.2 玻璃器皿清洗與滅菌 56
4.3.3 盤面光度之調整 56
4.3.4 藻類之培養步驟及裝置 58
4.3.5 ISOTON II之配製 58
4.3.6 COD-比色法藥品配製 59
4.3.7 電子顆粒計數器操作方式與原理 59
4.4 儀器操作原理、步驟與設定條件 62
4.4.1 COD-比色法 62
4.4.2 高效能液相層析儀(High Performance Liquid Chromat- ography, HPLC) 63
4.5 密閉式藻類毒性試驗方法及步驟 66
4.5.1 實驗方法 66
4.5.2 實驗步驟 66
4.6 實驗之品保及品管(QA/QC) 71
第五章、結果與討論 74
5.1 藻類毒性試驗數據 74
5.2 苯甲醛類結構與毒性 89
5.3 最佳化模式 92
5.4 EC10值與NOEC、LOEC、NEC值之比較 98
5.5 急慢毒性比(Acute-Chronic Toxicity Ratio ; ACR) 105
5.6 密閉式BOD瓶藻類毒性試驗與其他物種試驗之比較 108
5.7 QSAR分析 111
第六章、結論與建議 118
6.1 結論 118
6.2 建議 119
第七章、參考文獻 121
附錄一、原始數據
附錄二、檢量線(HPLC)
1. Bailey, R.A., Clark, H.M., Krause, S., Strong, R.L., 1978. “Atmospheric chemistry” Chemistry of the Environment. Academic Press. New York.
2. Sitting, M., 1974. “Aldehydes” Pollution Detection and Monitoring Handbook. Noyes Data Corp. Park Ridge. New Jersey.
3. J.L.M, Hermens., 1990. Electrophiles and acute toxicity to fish. Environ. Health. Persp. 87, 219-225.
4. Koga, M., Akiyama, T., Glaze, W.H., 1991. Analysis of ozonation by-products produced in drinking water treatment. Toxicol. and Health. 7, 423-432.
5. Manaha, S.E., 1990. Environmental Chemistry (4th End). Lewis. Boca. Ration. FL. 414-416.
6. Que-Hee, S.S., 1993. Biological Montoring:An introduction (Edn). Van Nostrand Reinhold. New York .
7. Wang, X., Cheng, S., Wang, L., Han, S., 2001. Quantitative Structure-Activity Relationships: Comparative inhibition of nitrogen-containing aromatics on germination of Cucumis Sativus. Environ. Toxicol. Chem. 20, 913-916.
8. Dimitrov, S., Koleva, Y., Schultz, T.W., Walker, J.D., Mekenyan, O., 2004. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity. Environ. Toxicol. Chem. 23 (2), 463-470.
9. Fessenden, R.J., Fessenden, J.S., Logue, M.W., 1998. Organic Chemistry. 6th edition Brooks/Cole Publishing Company. A Division of International Thomson Publishing Inc. ISBN 0-534-35199-9. CA. USA.
10. Brown, W.H., 1997. Introduction to Organic Chemistry, Saunders College Publishing. Harcourt Brace & company. FL. USA.
11. Henschler, D., Schlede, E., 1986. Structure-activity relationships of α,β-unsaturated carbonylic compounds. IARC. 70, 197-205.
12. Sterner, O., Carter, R.E., Nilsson, L.M., 1987. Structure-activity relationships for unsaturated dialdehydes. 1. the mutagenic activity of 18 compounds in the Salmonella/microsome assay. Mutat. Res. 188, 169-74.
13. Morales, P., Andersson, M., Lewan, L., Sterner, O., 1992. Structure-activity relationships for unsaturated dialdehydes. 6. The mutagenic activity of 11 compounds in the V78/HGPRT assay. Mutat. Res. 268, 315-21.
14. Karabunarliev, S., Mekenyan, O.G., Karcher, W., Russom, C.L., Bradbury, S.P., 1996. Quantum-chemical descriptors for estimating the acute toxicity of electrophiles to the fathead minnow (Pimephales promelas). An analysis based on molecular mechanisms. Qunat. Struct-Act Relat. 15, 302-310.
15. Dearden J.C., 2002. Prediction of environmental toxicity and fate using quantitative structure-activity relationships(QSARs). J. Braz. Chem. Soc. 13, 754-762.
16. Sixt, S., Altschuh, J., Bruggemann, R., 1995. Quantitative structure-toxicity relationship for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere. 60, 2397-2414.
17. Nirmalakhandan, N., Peace, J., Egemen, E., M.Mohsin, S.B., Hall, E., 1996. Estimating toxicity of mixtures of organic chemicals to activated sludge using surrogate test cultures. Wat. Sci. Tech. 34, 87-92.
18. Ramos, E.U., Vaal, M.A., Hermens, J.L.M., 2002. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharm. 11, 149-158.
19. Kaiser, K.L.E., Esterby, S.R., 1991. Regression and cluster analysis of the acute toxicity of 267 chemicals to six species of biota and octanol/water partition coefficient. Sci. Total. Environ. 109 (110), 499-514.
20. Mayer, P., Nyholm, N., Verbruggen, E.M.J., Hermens, J.L.M., Tolls, J., 2000. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environ. Toxicol. Chem. 19, 2551–2556.
21. Padrtova, R.R., Marsalek, B., Holoubek, I., 1998. Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. Chemosphere. 37, 495-507.
22. Chen, C.Y., Chao, M.R., 2000. No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596.
23. Okumura, Y., Koyama, J., Takaku, H., Satoh, H., 2001. Influence of Organic Solvents on the Growth of Marine Microalgae. Arch. Environ. Contam. Toxicol. 41, 123–128.
24. Nyholm, N., Damgaard, B.M., 1990. A comparison of the algal growth inhibition toxicity test method with the short term 14C-assimilation test. Chemosphere. 21, 671-679.
25. Brack, W., Rottlern, H., 1994. Toxicity testing of highly volatile chemicals with green algae. ESPR. 4, 223-228.
26. Kuhn, R., Pattard, M., Pernak, K., Winter, A., 1989. Results of the Harmful Effects of Selected Water Pollutants(Anilines, Phenols, Aliphatic Compounds) to Daphnia magna. Water. Res. 23, 495-499.
27. Galassi, S., Vighi, M., 1981. Testing toxicity of volatile substances with algae. Chemosphere. 10, 1123-1126.
28. Herman, D.C., Inniss, W.E., Mayfield, C.I., 1990. Impact of volatile aromatic hydrocarbons, alone ane in combination, on growth of the freshwater alga Selenastrum Capricornutum. Aquatic. Toxicology. 18, 87-100.
29. Chen, C.Y., Lin, K.C., 1997. Optimization and performance evaluation of the continuous algal toxicity test. Environmental Toxicology Chemistry. 16, 1337-1344.
30. Huang, H.J., 2000. Experimental design of the algal toxicity test based on photosynthesic response. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University.
31. Halling-Sψrensen, B., Nyholm, N., Baun, A., 1996. Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere. 32, 1513 – 1526.
32. Arensberg, P., Hemmingsen, V.H., Nyholm, N., 1995. A miniscale algal toxicity test. Chemosphere. 30, 2103-2115.
33. Lin, J.H., 2001. Experimental design of the algal toxicity test based on BOD bottle. A Thesis Submitted to Institute of Environmental Engineering of National Chiao Tung University.
34. Nyholm, N., Kälqvist, T., 1989. Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8, 689-703.
35. United States Environmental Protection Agency(U.S. EPA). 1996. Ecological Effect Test Guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II.
36. Chen, C.Y., 1994. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Water Research. 28, 931-937.
37. Millington, L.A., Goulding, K.H., Adams, N., 1988. The influence of growth medium composition on the toxicity of chemicals to algae. Water Research. 22, 1593-1597.
38. Newman, M.C., McIntosh, A.W., 1991. Metal Ecotoxicology. pp.1-26. Lewis, Michigan.
39. Mazidji, C.N., Koopman, B., Bitton, G., Neita, D., 1992. Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environ. Toxicol. Water. Qual. 7, 339-353.
40. Sorvari, J., Sillanpaa, M., 1996. Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna. Chemosphere. 33, 1119-1127.
41. Lin, J.H., Kao, W.C., Tsai, K.P., Chen, C.Y., 2005. Anovel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877.
42. Christensen, E.R., Chen, D., Nyholm, N., Kusk, O., 2001. Joint action of chemicals in algal toxicity tests: influence of response level and dose – response regression model. Environ. Toxicol. Chem. 20, 2361-2369.
43. Jawecki, G.N., Sawicki, J., 1999. Spirotox-A new tool for testing the toxicity of volatile compounds. Chemosphere. 38, 3211-3218.
44. Kuhn, R., Pattard, M., 1990. Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test. Wat. Res. 24, 31-38.
45. Ensley, H.E., Sharma, H.A., Barber, J.T., Polito, M.A., 1997. Metabolism of chlorinated phenols by Lemna gibba, Duckweed. In E.L. Kruger, T.A. Anderson, and J.R. Coats (eds.), Phytoremediation of Soil and Water Contaminants, American Chemical Society. Washington. DC.238-253.
46. Kim, H.K., Kim, J.R., Ahn, Y.J., 2004. Acaricidal activity of cinnamaldehyde and its congeners against Tyrophagus Putrescentiae. Journal of Stored Products Research 40, 56-63.
47. Yen, J.H., Lin, K.H., Wang, Y.S., 2002. Acute Lethal Toxicity of Environmental Pollutants to Aquatic Organisms. Ecotox. Safe. 52, 113-116.
48. Dearden, J.C., Cronin, M.T.D., Schultz, T.M., 1995. QSAR study of the toxicity of nitrobenzenes of Tetrehymena pyrifirmis. Quant. Struct-Act Relat. 14, 427-432.
49. Mckarns, J.W., Hansch, C., Caldwell, W.S., Morgan, W.T., Moore, S.K., Doolittle, D.J., 1997. Correlation between hydrophobicity of Short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fund. Appl. Toxicol. 36, 62-70.
50. Speece, R.E., 1988. Structure-activity relationships : Quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ. Sci. Technol. 22, 606-615.
51. Hansch, C., Maloney, P.P., Fujita, T., Muir, R.M., 1962. Correlation of the biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature. 194, 178-180.
52. McFarland, J.W., 1970. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13, 1092-1196.
53. Lijun, J., Jiayin, D., Pan, G., Liansheng, W., Zhongbo, W., 1998. Quantitative structure-toxicity relationships for benzaldehydes to Daphnia magna. Chemosphere. 37(1), 79-85.
54. Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E., Drummond, R A., 1997. Predicting modes of toxic action from chemical structure : acute toxicity in the fathead minnow (Pimephales promelas).Environ. Toxicol. Chem. 16 (5), 948-967.
55. Nirmalakhandan, N., Egemen, E., Trevizo, C., Xu, S., 1998. Structure and property-activity relationship models for prediction of microbial toxicity of organic chemicals to activated sludge. Ecotox. Environ. Safe. 39, 112-119.
56. Atkins, P.W., 1994. Physical chemistry. Oxiford University Press. 497.
57. Di, M.W., Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox. Environ. Safe. 59, 256-262.
58. Randic, M., 1975. On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615.
59. Kubinyi, H., 1993. QSAR: Hansch Analysis and Related Approaches. VCH Publishers. New York. NY(USA). pp.4-49.
60. Schultz, T.W., Sinks, G.D., Bearden, A.P., 1998. QSAR in aquatic toxicology:A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers J, editor. Comparative QSAR. New York:Taylor & Francis. 51-109.
61. Verhaar, H.J.M., Van Leeuwen, C.J., Hermens, J.L.M., 1992. Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25, 471-491.
62. Schultz, T.W., 1987. The use of ionization constant(pKa) in selecting models of toxicity in phenols. Ecotox. Environ. Safety. 14, 178-183.
63. Zhao, Y.T., Cronin, M.T., Dearden, J.C., 1998. Quantitative structure- activity relationships of chemicals acting by non-polar narcosis-theoretical considerations. Quant. Struct. Act. Relat. 17, 131-138.
64. Escher, B.I., Schwarzenbach, R.P., 2002. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentration in aquatic organisms. Aquatic Science. 64, 20-35.
65. Lipick, R.L., 1991. Outliers: their origin and use in the classification of molecular mechanisms of toxicity. Sci. Total. Environ. 109 (110), 131-153.
66. Schultz, T.W., Bearden, A.P., Jaworska, J.S., 1996. A novel QSAR approach for estimating toxicity of phenols. SAR QSAR Environ. Res. 5, 99-112.
67. Seward, J.R., Hamblen, E.L., Schultz, T.W., 2002. Regression comparisons of Tetrahymena pyriformis and Poecilia reticulata toxicity. Chemosphere. 47, 93-101.
68. Franks, N.B., Lieb W.R., 1990. Mechanisms of general anesthesia. Environ. Health Perspectives. 87, 199-205.
69. Verhaar, H.J.M., Van leeuwen C.J., Hermens J.L.M., 1992.Classifying Environmental Pollutants 1:Structure-activity relationships for predication of aquatic toxicity. Chemosphere. 25, 471-491.
70. Lipnick, R.L., Watson, K.R., Strausz, K.A., 1987. A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish, Narcosis, electrophile and proelectrophile mechanisms. Xenobiotica. 17, 1011-1025.
71. Dearden, J.C., Cronin, M.T.D., Zhao, Y.H., 2000. QSAR Studies of Compounds Acting by Polar and Non-polar Narcosis: an Examination of the Role of Polarisability and Hydrogen Bonding. Quant. Struct. Act. Relat. 19, 3-9.
72. Blum, D.J.W., Speece, R.E., 1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. J. WPCF. 63, 198-207.
73. Glendon, D., Sinks., Schultz T.W., 2001. Correlation of Tetrahymena and Pimephales toxicity: evaluation of 100 additional compounds. Environ. Toxicol. Chem. 20 (4), 917-921.
74. Di Marizo W.D., Galassi, S., Todeschini, R., Consolaro, S., 2001. Traditional versus WHIM molecular descriptors in QSAR approaches applied to fish toxicity studies. Chemosphere. 44, 401-406.
75. Kenaga, E.E., 1982. Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environ. Toxicol. Chem. 1, 347-358.
76. Mayer, F.L., Krause, G.F., Buckler, D.R., Ellersieck, M.R., 1994. Predicting chronic lethality of chemicals to fishes from acute toxicity test data : concepts and linear regression analysis. Environ. Toxicol. Chem. 13,671-678.
77. Persoone, G., Janssen, C.R., 1994. Field validation of predictions based on laboratory toxicity tests. In Hill IR, Heimbach F, Leeuwangh P, Matthiessen P, eds, Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis, Boca Raton, FL, USA, pp 379–397.
78. Länge, R., Hutchinson, T.H., Scholz, N., Solbé, J.,1998, Analysis of the ECETOC aquatic toxicity(EAT) database II – Comparison of acute to chronic ratios for various aquatic organism and chemical substances. 36,115-127
79. Roex, EWM., Van Gestel CAM., Van Wezel AP., Van Straalen NM., 2000. Ratios between acute aquatic toxicity and effects on population growth rate in relation to toxicant mode of action. Environ. Toxicol. Chem. 19, 685-693.
80. Willford, W.A., 1968. Toxicity of dimethyl sulfoxide (DMSO) to fish. Bur Sport Fish Wildl Invest Fish Control. 20, 3-8.
81. Kononen, D.W., Gorski, R.A., 1997. A method for evaluating the toxicity of industrial solvent mixture. Environ. Toxicol. Chem. 16, 968–976.
82. Lijun, J., Yan, G., Jiayin, D., Linansheng, W., Zhongbo, W., Zheng, Z., 1999. Toxicity of substituted benzaldehydes to Photobacterium Phosphoreum and quantitative structure-activity relationship. Toxicological and Environmental Chemistry. 69, 149-156.
83. 謝適鴻,2005,以密閉式藻類毒性試驗評估工業常用非極性麻醉有機物之混合毒性,國立交通大學環境工程研究所,碩士論文。
84. Fan, C.S., Stauffer J.F., Umbreit W.W., 2006. An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis by chlorella. The Journal of General Physiology. 27, 15-28.
85. Zhao, Y.H., Ji, G.D., Cronin, M.T.D., Dearden, J.C., 1998. QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. The Science of the Total Environment. 216, 205-215.
86. Walker, J.D., Jaworska, J., Comber, M.H.I., Schultz, T.W., Dearden, J.C., 2003. Guidelines for developing and using quantitative structure-activity relationships. Environmental Toxicology and Chemistry. 22, 1653-1665.
87. Netzeva, T.I., Schultz, T.W., 2005. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere. 61, 1632-1643.
88. Christensen, E.R., Chen, C.Y., 1985. A general noninteractive multiple toxicity model including Probit, Logit, and Weibull transformations. Biometrics. 41, 711-725.
89. Prakash, J., Nirmalakhandan, N., Sun, B., Peace, J., 1996. Toxicity of binary mixtures of organic chemicals to microorganisms. Wat. Res. 30, 1459-1463.
90. Kishino, T., Kobayashi, K., 1996. Acute toxicity and structure-activity relationships of chlorophenols in fish.Wat. Res. 30, 387-392.
91. 林國清,1997,連續式藻類毒性試驗之實驗設計及效能評估,國立交通大學土木工程研究所,博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top