|
[1] Ravindra K. Ahuja and James B. Orlin. A capacity scaling algorithm for the constrained maximum ow problem. Networks, 25(2):8998, 1995. [2] Kellogg S. Booth and J. Howard Johnson. Dominating sets in chordal graphs. SIAM J. Comput., 11(1):191199, 1982. [3] Gerard J. Chang. Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Applied Mathematics, 22(1):2134, 1988. [4] Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Approximation algorithms and hardness of the k-route cut problem. ACM Trans. Algorithms, 12(1):2, 2016. [5] Joanna Cyman and Joanna Raczek. Total outer-connected domination numbers of trees. Discrete Applied Mathematics, 157(15):31983202, 2009. [6] Odile Favaron and Michael A. Henning. Upper total domination in claw-free graphs. Journal of Graph Theory, 44(2):148158, 2003. [7] Odile Favaron and Michael A. Henning. Paired-domination in claw-free cubic graphs. Graphs and Combinatorics, 20(4):447456, 2004. [8] Michael A. Henning. Graphs with large total domination number. Journal of Graph Theory, 35(1):2145, 2000. [9] Michael A. Henning. A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1):3263, 2009. [10] Michael A. Henning and Sinclair A. Marcon. Domination versus disjunctive domination in trees. Discrete Applied Mathematics, 184:171177, 2015. [11] Michael A. Henning and Viroshan Naicker. Bounds on the disjunctive total domination number of a tree. Discussiones Mathematicae Graph Theory, 36(1):153 171, 2016. [12] Michael A. Henning and Viroshan Naicker. Disjunctive total domination in graphs. J. Comb. Optim., 31(3):10901110, 2016. [13] Michael A. Henning and Anders Yeo. Total domination in graphs. 2013. [14] Michael Anthony Henning and Viroshan Naicker. Graphs with large disjunctive total domination number. Discrete Mathematics & Theoretical Computer Science, 17(1):255282, 2015. [15] Michael S. Jacobson and Kenneth Peters. Chordal graphs and upper irredundance, upper domination and independence. Discrete Mathematics, 86(1-3):59 69, 1990. [16] J. Mark Keil. The complexity of domination problems in circle graphs. Discrete Applied Mathematics, 42(1):5163, 1993. [17] Péter Kovács. Minimum-cost ow algorithms: an experimental evaluation. Optimization Methods and Software, 30(1):94127, 2015. [18] Dieter Kratsch and Lorna Stewart. Total domination and transformation. Inf. Process. Lett., 63(3):167170, 1997. [19] Harold W. Kuhn. The hungarian method for the assignment problem. 2003. [20] James K. Lan and Gerard Jennhwa Chang. On the algorithmic complexity of k-tuple total domination. Discrete Applied Mathematics, 174:8191, 2014. [21] Alice Anne McRae. Generalizing NP-completeness Proofs for Bipartite Graphs and Chordal Graphs. PhD thesis, Clemson, SC, USA, 1995. UMI Order No.GAX95-18192. [22] Sandra L. Mitchell, Ernest J. Cockayne, and Stephen T. Hedetniemi. Linear algorithms on recursive representations of trees. J. Comput. Syst. Sci., 18(1):76 85, 1979. [23] Haiko Müller and Andreas Brandstädt. The np-completeness of steiner tree and dominating set for chordal bipartite graphs. Theor. Comput. Sci., 53:257265, 1987. [24] B. S. Panda and Arti Pandey. Complexity of total outer-connected domination problem in graphs. Discrete Applied Mathematics, 199:110122, 2016. [25] B. S. Panda, Arti Pandey, and S. Paul. Algorithmic aspects of disjunctive domination in graphs. pages 325336, 2015. [26] G. Ramalingam and C. Pandu Rangan. Total domination in interval graphs revisited. Inf. Process. Lett., 27(1):1721, 1988. [27] S. M. Hedetniemi Renu Laskar, John Pfa and S. T. Hedetneimi. On the algorithmic complexity of total domination. SIAM. J. on Algebraic and Discrete Methods, 5(3):420425. [28] Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J. Comput., 1(1):157171, 1994. [29] Volker Turau and Sven Köhler. A distributed algorithm for minimum distance-k domination in trees. J. Graph Algorithms Appl., 19(1):223242, 2015. [30] Yancai Zhao and Erfang Shan. An ecient algorithm for distance total domination in block graphs. J. Comb. Optim., 31(1):372381, 2016.
|