跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子靖
研究生(外文):Tz-Jing Yang
論文名稱:硝酸鹽訊息傳遞調控蛋白AtNLP7 PB1區之分子特性探討
論文名稱(外文):Molecular basis for PB1 domain of nitrate response regulator AtNLP7
指導教授:鄭貽生鄭貽生引用關係
口試委員:林讚標楊健志張世宗
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:硝酸鹽訊息傳遞轉錄因子小角度X光散射同源性結構模型l多聚體
外文關鍵詞:nitrate-signaling pathwayAtNLP7NLPsPB1 domainSAXSDLS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硝酸鹽是植物體生長不可或缺重要營養源之一,同時亦可作為訊息分子調控植物的側根發育、開花時間及胺基酸之生合成。因此,植物如何調控基因表現來適應環境硝酸鹽濃度的波動便是一個重要的問題,然而對於硝酸鹽訊息路徑的研究不多,僅有參與調控訊息路徑的轉錄因子ANR1、SPL9、LBD37/38/39,及NLP7 (NIN-like protein 7)等蛋白分子被報導。AtNLP7屬於NIN-like protein (NLPs) 家族,其家族共9個成員,NLPs具有兩個重要的功能區塊,其一為RWP-RK domain,功能為DNA結合功能區塊,目前已知AtNLPs 家族利用RWP-RK domain結合在Nitrate-response cis-element並活化下游基因表現,藉此調控硝酸鹽訊息相關基因表現;其二,PB1 (Phox and Bem 1) domain,功能為蛋白質與蛋白質間交互作用,此功能區塊常見於真核細胞內參與訊息傳遞的蛋白質中。
本研究主要是以生物物理分析研究NLP7的PB1 domain之特性。在蛋白質純化過程中發現,此蛋白質會出現聚集現象(aggregation)形成多聚體(oligomer)。在經過數種緩衝液的改善下,成功讓NLP7 PB1蛋白質在溶液條件20 mM Tris-HCl pH 8.8,0.5 M NaCl,10 % glycerol,5 mM GSH,1 mM TCEP下,以二聚體(dimer)形式穩定存在。利用小角度X光散射(Small-angle X-ray scattering)分析,得到NLP7 PB1蛋白質二聚體之Rg值 (25.46A)、Dmax值 (71.14A),再將重建蛋白質結構外殼與同源性結構模型進行疊合。進一步發現NLP7 PB1蛋白質在最適溶液中,呈現不同的聚合形式,如蛋白質濃度在1 mg/ml時為二聚體、2 mg/ml時為四聚體、高於2 mg/ml時皆為多聚體。經分析其模擬結構及序列比對,NLP7 PB1同時具有Type I和Type II的特徵,在以定點突變,分別對Type I (D909/D911) 以及 Type II (K867)特徵胺基酸進行突變後,其所得純化之目標蛋白質皆呈現單體形式,證明NLP7 PB1屬於Type I/II PB1 domain (第三型),NLP7 PB1藉由自身K867殘基和OPCA motif (D909, D911, E913, D922) 之間交互作用形成同多聚體(homo-oligomer)。本研究表明NLP7可能藉由多聚體與單體之轉換來參與硝酸鹽訊息傳遞路徑或以PB1區塊與其他調控路徑中的蛋白交互作用,達成相關基因表現的調控。


中文摘要 i
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
附錄 x
縮寫對照表 xi
Chapter 1 前言 1
1.1 硝酸鹽為植物必需之營養源並可作為訊息分子 1
1.2 初級硝酸鹽反應 (Primary Nitrate Response, PNR) 2
1.3 RWP-RK 轉錄因子家族 (RWP-RK transcription factor family) 2
1.4 NIN-like proteins (NLPs) family 4
1.5 NIN-like protein 7為硝酸鹽訊息路徑之主要調控者 5
1.6 NLP7 之 PB1 (Phox and Bem1p) domain 功能區塊 6
1.7 研究目標 7
Chapter 2 材料與方法 9
2.1 NLP7 PB1基因 9
2.2 NLP7 PB1 domain 表現載體之構築 9
2.3 勝任細胞(Competent cell)之製備 10
2.4 轉形作用 10
2.5 重組蛋白之大量表現 10
2.6 破菌 11
2.7 重組蛋白質之純化 11
2.8 蛋白質濃縮與定量 11
2.9 蛋白質保存緩衝液置換 12
2.10 SDS-聚丙烯醯胺膠體電泳(SDS-PAGE) 12
2.11 西方墨點法(Western blotting) 12
2.12 粒徑排阻層析分析(Size-exclusion chromatography, SEC) 13
2.13 動態光散射分析(Dynamic light scattering, DLS) 13
2.14 小角度散射實驗(Small-angle X-ray scattering) 13
2.15 同源性結構模型建立與結構比對分析 14
2.16 蛋白質結晶實驗 14
2.16.1 Pre-crystallization test (PCT測試) 14
2.16.2 蛋白質結晶條件篩選 15
2.16.3 結晶條件之微調 15
Chapter 3 實驗結果 16
3.1 NLP7 PB1蛋白質表現與純化 16
3.2 NLP7 PB1蛋白質粒徑排阻層析分析(SEC) 16
3.3 NLP7 PB1聚合型態分析 17
3.4 NLP7 PB1突變型之純化結果與聚合型態分析 17
3.5 NLP7 PB1重組蛋白質小角度X光散射(SAXS)分析 18
3.6 蛋白質養晶實驗 19
Chapter 4 討論 21
4.1 NLP7 PB1蛋白質純化策略 21
4.2 NLP7 PB1蛋白質於不同緩衝溶液多聚體型態比較 21
4.3 NLP7 PB1蛋白質多聚體型態與樣品濃度關係比較 22
4.4 NLP7 PB1蛋白質藉由K867與OPCA motif的交互作用形成多聚體 22
4.5 NLP7可能以多聚體形式參與硝酸鹽訊息路徑調控 23
Chapter 5 結論 25
圖表 26
參考文獻 56
附錄 66


Calderon-Villalobos, L.I., Tan, X., Zheng, N., and Estelle, M. (2010). Auxin perception--structural insights. Cold Spring Harbor Perspectives Biology, 2, a005546.
Camargo, A., Llamas, A., Schnell, R.A., Higuera, J.J., Gonzalez-Ballester, D., Lefebvre, P.A., Fernandez, E., and Galvan, A. (2007). Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell, 19, 3491-3503.
Castaings, L., Marchive, C., Meyer, C., and Krapp, A. (2011). Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. Journal of Experimental Botany, 62, 1391-1397.
Castaings, L., Camargo, A., Pocholle, D., Gaudon, V., Texier, Y., Boutet-Mercey, S., Taconnat, L., Renou, J.P., Daniel-Vedele, F., Fernandez, E., Meyer, C., and Krapp, A. (2009). The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant Journal, 57, 426-435.
Chardin, C., Girin, T., Roudier, F., Meyer, C., and Krapp, A. (2014). The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 65, 5577-5587.
Crawford, N.M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell, 7, 859-868.
Crawford, N.M., and Forde, B.G. (2002). Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book, 1, e0011.
Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, 435, 441-445.
Drew, M.C. (1975). Comparison of Effects of a Localized Supply of Phosphate, Nitrate, Ammonium and Potassium on Growth of Seminal Root System, and Shoot, in Barley. New Phytologist, 75, 479-490.
Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics, Chapter 2, unit 2.9.

Ferre-D''Amare, A.R., Prendergast, G.C., Ziff, E.B., and Burley, S.K. (1993). Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature, 363, 38-45.
Ferris, P.J., and Goodenough, U.W. (1997). Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics, 146, 859-869.
Forde, B.G. (2014). Nitrogen signalling pathways shaping root system architecture: an update. Current Opinion in Plant Biology, 21, 30-36.
Franke, D., and Svergun, D.I. (2009). DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of Applied Crystallography, 42, 342-346.
Geiszt, M., and Leto, T.L. (2004). The Nox family of NAD(P)H oxidases: host defense and beyond. Journal of Biological Chemistry, 279, 51715-51718.
Gowri, G., Kenis, J.D., Ingemarsson, B., Redinbaugh, M.G., and Campbell, W.H. (1992). Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Molecular Biology, 18, 55-64.
Handberg, K., and Stougaard, J. (1992). Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant Journal, 2, 487-496.
Hirano, Y., Yoshinaga, S., Ogura, K., Yokochi, M., Noda, Y., Sumimoto, H., and Inagaki, F. (2004). Solution structure of atypical protein kinase C PB1 domain and its mode of interaction with ZIP/p62 and MEK5. Journal of Biological Chemistry, 279, 31883-31890.
Hirano, Y., Yoshinaga, S., Takeya, R., Suzuki, N.N., Horiuchi, M., Kohjima, M., Sumimoto, H., and Inagaki, F. (2005). Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains. Journal of Biological Chemistry, 280, 9653-9661.
Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 Functions as a Nitrate Sensor in Plants. Cell, 138, 1184-1194.
Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics, 24, 2780-2781.

Honbou, K., Minakami, R., Yuzawa, S., Takeya, R., Suzuki, N.N., Kamakura, S., Sumimoto, H., and Inagaki, F. (2007). Full-length p40phox structure suggests a basis for regulation mechanism of its membrane binding. EMBO Journal, 26, 1176-1186.
Hu, H.C., Wang, Y.Y., and Tsay, Y.F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant Journal, 57, 264-278.
Ito, T., Matsui, Y., Ago, T., Ota, K., and Sumimoto, H. (2001). Novel modular domain PB1 recognizes PC motif to mediate functional protein-protein interactions. EMBO Journal, 20, 3938-3946.
Kalderon, D., Richardson, W.D., Markham, A.F., and Smith, A.E. (1984a). Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 311, 33-38.
Kalderon, D., Roberts, B.L., Richardson, W.D., and Smith, A.E. (1984b). A short amino acid sequence able to specify nuclear location. Cell, 39, 499-509.
Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435, 446-451.
Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., and Svergun, D.I. (2003). PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography, 36, 1277-1282.
Konishi, M., and Yanagisawa, S. (2010). Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant Journal, 63, 269-282.
Konishi, M., and Yanagisawa, S. (2011). Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochemical and Biophysical Research Communications, 411, 708-713.
Konishi, M., and Yanagisawa, S. (2013). Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, 4, 1617.
Konishi, M., and Yanagisawa, S. (2014). Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. Journal of Experimental Botany, 65, 5589-5600.

Korasick, D.A., Westfall, C.S., Lee, S.G., Nanao, M.H., Dumas, R., Hagen, G., Guilfoyle, T.J., Jez, J.M., and Strader, L.C. (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences of the United States of America, 111, 5427-5432.
Korolchuk, V.I., Menzies, F.M., and Rubinsztein, D.C. (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Letters, 584, 1393-1398.
Krapp, A., David, L.C., Chardin, C., Girin, T., Marmagne, A., Leprince, A.S., Chaillou, S., Ferrario-Mery, S., Meyer, C., and Daniel-Vedele, F. (2014). Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany, 65, 789-798.
Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774-797.
Krouk, G., Crawford, N.M., Coruzzi, G.M., and Tsay, Y.F. (2010). Nitrate signaling: adaptation to fluctuating environments. Current Opinion in Plant Biology, 13, 266-273.
Krouk, G., Lingeman, J., Colon, A.M., Coruzzi, G., and Shasha, D. (2013). Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biology, 14, 123.
Lamark, T., Perander, M., Outzen, H., Kristiansen, K., Overvatn, A., Michaelsen, E., Bjorkoy, G., and Johansen, T. (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. Journal of Biological Chemistry, 278, 34568-34581.
Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4, 181-189.
Landschulz, W.H., Johnson, P.F., and McKnight, S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 240, 1759-1764.
Lardy, B., Bof, M., Aubry, L., Paclet, M.H., Morel, F., Satre, M., and Klein, G. (2005). NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochimica Et Biophysica Acta-Molecular Cell Research, 1744, 199-212.
Lark, R.M., Milne, A.E., Addiscott, T.M., Goulding, K.W.T., Webster, C.P., and O''Flaherty, S. (2004). Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: an analysis using wavelets. European Journal of Soil Science, 55, 611-627.
Lau, S., Jurgens, G., and De Smet, I. (2008). The evolving complexity of the auxin pathway. Plant Cell, 20, 1738-1746.
Lawlor, D., Lemaire, G., and Gastal, F. (2001). Nitrogen,Plant Growth and Crop Yield. Plant Nitrogen, 343-367.
Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y., and Glass, A.D. (2007). Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology, 143, 425-433.
Lin, H., and Goodenough, U.W. (2007). Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1. Genetics, 176, 913-925.
Lippai, M., and Low, P. (2014). The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Research International, 2014, 832704.
Little, D.Y., Rao, H.Y., Oliva, S., Daniel-Vedele, F., Krapp, A., and Malamy, J.E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America, 102, 13693-13698.
Liu, K.H., Huang, C.Y., and Tsay, Y.F. (1999). CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 11, 865-874.
Marchive, C., Roudier, F., Castaings, L., Brehaut, V., Blondet, E., Colot, V., Meyer, C., and Krapp, A. (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications, 4, 1713.
Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., Valadier, M.H., Feraud, M., Jouglet, T., and Suzuki, A. (2006). Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology, 140, 444-456.
Medici, A., and Krouk, G. (2014). The primary nitrate response: a multifaceted signalling pathway. Journal of Experimental Botany, 65, 5567-5576.
Miller, A.J., Fan, X., Orsel, M., Smith, S.J., and Wells, D.M. (2007). Nitrate transport and signalling. Journal of Experimental Botany, 58, 2297-2306.
Minucci, S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., Bianchini, A., Colombo, E., Schiavoni, I., Badaracco, G., Hu, X., Lazar, M.A., Landsberger, N., Nervi, C., and Pelicci, P.G. (2000). Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Molecular Cell, 5, 811-820.
Moscat, J., and Diaz-Meco, M.T. (2009). p62 at the Crossroads of Autophagy, Apoptosis, and Cancer. Cell, 137, 1001-1004.
Moscat, J., and Diaz-Meco, M.T. (2012). p62: a versatile multitasker takes on cancer. Trends in Biochemical Sciences, 37, 230-236.
Moscat, J., Diaz-Meco, M.T., Albert, A., and Campuzano, S. (2006). Cell signaling and function organized by PB1 domain interactions. Molecular Cell, 23, 631-640.
Mulakkal, N.C., Nagy, P., Takats, S., Tusco, R., Juhasz, G., and Nezis, I.P. (2014). Autophagy in Drosophila: From Historical Studies to Current Knowledge. Biomed Research International, 2014, 273473.
Muller, S., Kursula, I., Zou, P., and Wilmanns, M. (2006). Crystal structure of the PB1 domain of NBR1. FEBS Letters, 580, 341-344.
Nakamura, R., Sumimoto, H., Mizuki, K., Hata, K., Ago, T., Kitajima, S., Takeshige, K., Sakaki, Y., and Ito, T. (1998). The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p40phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase. European Journal of Biochemistry, 251, 583-589.
Nanao, M.H., Vinos-Poyo, T., Brunoud, G., Thevenon, E., Mazzoleni, M., Mast, D., Laine, S., Wang, S., Hagen, G., Li, H., Guilfoyle, T.J., Parcy, F., Vernoux, T., and Dumas, R. (2014). Structural basis for oligomerization of auxin transcriptional regulators. Nature Communications, 5, 3617.
Noda, Y., Kohjima, M., Izaki, T., Ota, K., Yoshinaga, S., Inagaki, F., Ito, T., and Sumimoto, H. (2003). Molecular recognition in dimerization between PB1 domains. Journal of Biological Chemistry, 278, 43516-43524.
Paine, M.G., Babu, J.R., Seibenhener, M.L., and Wooten, M.W. (2005). Evidence for p62 aggregate formation: Role in cell survival. FEBS Letters, 579, 5029-5034.
Parker, J.L., and Newstead, S. (2014). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature, 507, 68-72.
Ponting, C.P., Ito, T., Moscat, J., Diaz-Meco, M.T., Inagaki, F., and Sumimoto, H. (2002). OPR, PC and AM: all in the PB1 family. Trends in Biochemical Sciences, 27, 10-10.
Puranik, S., Acajjaoui, S., Conn, S., Costa, L., Conn, V., Vial, A., Marcellin, R., Melzer, R., Brown, E., Hart, D., Theissen, G., Silva, C.S., Parcy, F., Dumas, R., Nanao, M., and Zubieta, C. (2014). Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell, 26, 3603-3615.
Quinn, M.T., and Gauss, K.A. (2004). Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76, 760-781.
Remans, T., Nacry, P., Pervent, M., Filleur, S., Diatloff, E., Mounier, E., Tillard, P., Forde, B.G., and Gojon, A. (2006). The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America, 103, 19206-19211.
Rexach, J., Llamas, A., Fernandez, E., and Galvan, A. (2002). The activity of the high-affinity nitrate transport system I (NRT2;1, NAR2) is responsible for the efficient signalling of nitrate assimilation genes in Chlamydomonas reinhardtii. Planta, 215, 606-611.
Rubin, G., Tohge, T., Matsuda, F., Saito, K., and Scheible, W.R. (2009). Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell, 21, 3567-3584.
Schauser, L., Wieloch, W., and Stougaard, J. (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. Journal of Molecular Evolution, 60, 229-237.
Schauser, L., Roussis, A., Stiller, J., and Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191-195.
Scheible, W.R., Lauerer, M., Schulze, E.D., Caboche, M., and Stitt, M. (1997a). Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant Journal, 11, 671-691.
Scheible, W.R., GonzalezFontes, A., Lauerer, M., MullerRober, B., Caboche, M., and Stitt, M. (1997b). Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 9, 783-798.
Silver, P.A. (1991). How proteins enter the nucleus. Cell, 64, 489-497.
Smith, G.K., D''Alessio, G., and Schaffer, S.W. (1978). Glutathione-facilitated refolding of reduced, denatured bovine seminal ribonuclease: kinetics and characterization of products. Biochemistry, 17, 2633-2638.
Soyano, T., Kouchi, H., Hirota, A., and Hayashi, M. (2013). Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genetics, 9, e1003352.
Strahm, B.D., and Harrison, R.B. (2006). Nitrate sorption in a variable-charge forest soil of the Pacific Northwest. Soil Science, 171, 313-321.
Sumimoto, H., Kamakura, S., and Ito, T. (2007). Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Science''s STKE, 2007, re6.
Sun, J., Bankston, J.R., Payandeh, J., Hinds, T.R., Zagotta, W.N., and Zheng, N. (2014). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature, 507, 73-77.
Sun, X.J., Wang, Z., Wang, L., Jiang, Y., Kost, N., Soong, T.D., Chen, W.Y., Tang, Z., Nakadai, T., Elemento, O., Fischle, W., Melnick, A., Patel, D.J., Nimer, S.D., and Roeder, R.G. (2013). A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature, 500, 93-97.
Svergun, D.I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 495-503.

Takemoto, D., Tanaka, A., and Scott, B. (2006). A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell, 18, 2807-2821.
Terasawa, H., Noda, Y., Ito, T., Hatanaka, H., Ichikawa, S., Ogura, K., Sumimoto, H., and Inagaki, F. (2001). Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif. EMBO Journal, 20, 3947-3956.
Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 72, 705-713.
Vagenende, V., Yap, M.G., and Trout, B.L. (2009). Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry, 48, 11084-11096.
Walch-Liu, P., and Forde, B.G. (2008). Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant Journal, 54, 820-828.
Wang, R., Xing, X., Wang, Y., Tran, A., and Crawford, N.M. (2009). A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiology, 151, 472-478.
Wang, R., Tischner, R., Gutierrez, R.A., Hoffman, M., Xing, X., Chen, M., Coruzzi, G., and Crawford, N.M. (2004). Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiology, 136, 2512-2522.
Wilson, M.I., Gill, D.J., Perisic, O., Quinn, M.T., and Williams, R.L. (2003). PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Molecular Cell, 12, 39-50.
Wriggers, W., and Chacon, P. (2001). Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. Journal of Applied Crystallography, 34, 773-776.
Xie, F., Murray, J.D., Kim, J., Heckmann, A.B., Edwards, A., Oldroyd, G.E., and Downie, J.A. (2012). Legume pectate lyase required for root infection by rhizobia. Proceedings of the National Academy of Sciences of the United States of America, 109, 633-638.
Yanagisawa, S. (2014). Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Science, 229, 167-171.
Yoshinaga, S., Kohjima, M., Ogura, K., Yokochi, M., Takeya, R., Ito, T., Sumimoto, H., and Inagaki, F. (2003). The PB1 domain and the PC motif-containing region are structurally similar protein binding modules. EMBO Journal, 22, 4888-4897.
Zhang, H., Jennings, A., Barlow, P.W., and Forde, B.G. (1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America, 96, 6529-6534.
Zhang, H.M., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279, 407-409.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top