跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭景翔
研究生(外文):Cheng, Ching-Hsiang
論文名稱:新隔離型多相高升壓比直流轉換器
論文名稱(外文):Novel Isolated Multi-Phase High Step-Up Voltage Ratio DC Converters
指導教授:潘晴財
指導教授(外文):Pan, Ching-Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:155
中文關鍵詞:多相直流轉換器隔離型轉換器高升壓比高效率
外文關鍵詞:Muti-Phase DC ConverterIsolated ConverterHigh Step-Up Voltage RatioHigh Efficiency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今具高升壓比直流轉換器已廣泛被使用於各種高壓電源應用上,如潔淨式能源系統與不斷電系統前級。考慮高壓應用場合中電氣隔離之安全需求,常見的高升壓比轉換器常運用變壓器或耦合電感達到電氣隔離之特性,雖然使用高匝數比的變壓器或耦合電感皆能達到高升壓比的效果,但此種升壓方式將導致功率元件上電壓應力增加以及降低該轉換器的電能轉換效率。基於上述理由,本論文提出一種不同於前述的升壓方法,該方法無須透過高匝數比的變壓器或耦合電感,亦能具有高升壓比的電能轉換能力。
本論文之主要貢獻茲分述如下:首先,提出一系列新隔離兩相高升壓比直流轉換器,該新型轉換器系列升壓比為 ,其中 為隔離變壓器匝數比, 為轉換器的責任週期, 。此外,該轉換器系列皆具高升壓比、低開關跨壓、低二極體跨壓、低輸入電流漣波、輸入兩相電流均流及高效率等特點。第二點貢獻則是推導出該系列轉換器中新隔離型六倍壓轉換器之數學模型,並分析其直流特性、操作模式邊界條件以及探討具最小輸出漣波電壓的最佳化輸出電容設計方法。第三點貢獻則依據理論分析結果,實際製作一新隔離型六倍壓轉換器雛型電路,其規格為輸入電壓25V、輸出電壓400V以及輸出功率400W,以驗證該轉換器之可行性。經由電路模擬與實測結果顯示本論文所研製之新隔離型六倍壓轉換器其開關與二極體跨壓分別為 及 ,相對應的「歐洲效率」與最高效率分別為93.49%及95.56%,此外透過箝位電路可進一步將「歐洲效率」與最高效率提升至94.73%及96.04%,以此驗證該新型轉換器之可行性與優越性。最後本論文所提出的新型轉換器系列可因應大功率等級的需求延伸出三相與四相電感的電路架構,其相對應的升壓比亦為 。

關鍵字:多相直流轉換器、隔離型轉換器、高升壓比、高效率

High step-up voltage ratio DC converters are widely used in a variety of high voltage applications such as the front-end stages of uninterruptible power systems and distributed energy systems. Also, for safety reasons, galvanic isolation is essential. Although one can use high turns ratio transformer and/or coupling inductors to achieve high step-up voltage ratio, however, the resulting high voltage stress and decreased efficiency are the major drawbacks. Hence, in this thesis, a different approach is employed to achieve high step-up voltage ratio without relying on a high turns ratio transformer and/or coupling inductors.
Basically, the major contributions of this thesis may be summarized as follows. Frist, a series of novel isolated two-phase high step-up voltage ratio DC converters are proposed to achieve a voltage gain of , where is isolated transformer turns ratio, is the duty ratio of the converter and . Special features of the proposed converters include less voltage stress of all active switches and diodes, low input current ripples, automatic current sharing among input phases, and higher efficiency. Second, modeling and characteristic analysis of a six times voltage multiplier converter are made in the context. In addition, optimal design of output capactiors is investigated to achieve minimum output voltage ripples. Third, a 400W prototype with 25V input and 400V output is constructed to verify the feasibility of the proposed converter. It is seen that the voltage stress of active switches and diodes are and respectively, and the corresponding European and maximum efficiencies are 93.49% and 95.56% respectively. Also, by adding an active clamped circuit, the resulting efficiencies are raised to 94.73% and 96.04% respectively. Finally, for even higher power levels, the corresponding three-phase and four-phase DC converters with voltage gain are also presented for reference.

Keywords:Muti-Phase DC Converter, Isolated Converter, High Step-Up Voltage Ratio, High Efficiency.

摘 要 I
英文摘要 II
目 錄 III
圖 目 錄 IV
表 目 錄 VII
第一章 緒 論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 本論文之貢獻 3
1.4 論文內容概述 4
第二章 新隔離型高升壓比直流轉換器系列 5
2.1 前言 5
2.2 電流饋入式二倍壓轉換器簡介 5
2.3 新隔離型三倍壓轉換器簡介 9
2.4 新隔離型四倍壓轉換器簡介 12
2.5 新隔離型五倍壓轉換器簡介 16
2.6 新隔離型六倍壓轉換器簡介 20
第三章 新隔離型六倍壓轉換器之建模與分析 28
3.1 前言 28
3.2 新型轉換器架構與工作原理 28
3.3 新型轉換器之數學模型推導 40
3.4 新型轉換器穩態特性分析 93
3.4.1 單開關高升壓比轉換器簡介 93
3.4.2 交錯式高升壓比轉換器簡介 96
3.4.3 隔離型四倍壓轉換器簡介 99
3.4.4 新型轉換器與相關文獻穩態特性比較 103
3.5 新型轉換器閉迴路控制策略 112
第四章 實體電路製作與量測結果 116
4.1 前言 116
4.2 功率電路製作 117
4.3 控制電路實現 119
4.4 模擬與實測結果 122
第五章 結 論 149
參考文獻 153

[1] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.
[2] G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],”Engineering Science and Education Journal, vol. 10, no. 1, pp. 4-12, Feb. 2001.
[3] M. Begovic, A. Pregelj, A. Rohatgi, and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1734-1743, Dec. 2001.
[4] H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1214-1215, Aug. 2001.
[5] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, vol. 35, no. 11, pp.35-40, 1998.
[6] M. W. Ellis, M. R. Von Spakovsky, and D. J. Nelson, “Fuel cell system: efficient, flexible energy conversion for the 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
[7] F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electronics, vol. 19, no. 5, pp. 1184-1194,Sep. 2004.
[8] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electronics, vol. 20, no. 4,pp. 847-856, Jul. 2005.
[9] J. S. Lai and Douglas J. Nelson, “Energy management power converters in hybrid electric and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 766-777, Apr. 2007.
[10] R. J. Wai, W. H. Wang, and C. Y Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Industrial Electronics, vol. 55, no. 1, pp. 240-250,Jan. 2008.
[11] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 3, pp. 953-964, Apr. 2008
[12] Y. He and F. L. Luo, “Analysis of Luo converters with voltage-lift circuit” IEE Proceedings Electric Power Applications, vol. 152, no. 5, pp. 1239-1252, Sep. 2005.
[13] M. Zhu and F. L. Luo, “Series SEPIC implementing voltage lift technique for DC-DC power conversion” IET Power Electronics, vol. 1, no. 1, pp. 109-121, Mar. 2008.
[14] L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless dc-dc converters with high step-up voltage gain” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
[15] A. A. Fardoun and E. H. Ismail, “Ultra step-up DC-DC converters with reduced switch stress” IEEE Trans. Industrial Applications, vol. 46, no. 5, pp. 2025-2034, Sep./Oct. 2010.
[16] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc-dc converter with high voltage gain and reduced switch stress,” IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb. 2007.
[17] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Step-up dc-dc converter by coupled inductor and voltage-lift technique,” IET Power Electronics, vol. 3, no. 3, pp. 369-378,May 2010.
[18] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up dc-dc converter for fuel cell energy conversion system,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp. 2007-2017, Jun. 2010.
[19] S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp. 1987-1997, Jun. 2010.
[20] W. Li, Y. Zhao, Y. Deng, and X. He, “Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion,” IEEE Trans. Power Electronics, vol. 25, no. 9, pp. 2397-2408, Sep. 2010.
[21] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electronics, vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
[22] R. J. Wai and C. Y. Lin, “High-efficiency, high-step-up DC-DC convertor for fuel cell generation system,” IEE Proceedings Electric Power Applications, vol. 152, no. 5, pp. 1371–1378, Sep. 2005.
[23] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, “A single switch boost-flyback DC-DC converter integrated with switched-capacitor cell,” in proc. IEEE Power Electronics Conf., May/Jun. 2010, pp.2782-2787
[24] J. H. Lee, D. H. Kim, S. Mun, M. T. Nguyen, V. T. Tran, and J. H. Park, “Series connected forward-flyback converter for high step-up power conversion,” in proc. IEEE Power Electronics Conf., May/Jun. 2010, pp.3037-3040
[25] W. Li, J. Shi, J. Liu, J. Wu, and X. He, “Performance analysis of an isolated ZVT boost converter with primary-parallel-secondary-series (PPSS) structure,” IEEE Power Electronics Specialists Conf., Jun. 2007, pp. 1709–1714
[26] X. Kong and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 543–550, Mar. 2007.
[27] G. Ivensky, I. Elkin, and S. Ben-Yaakov, “An isolated dc-dc converter using two zero current switched IGBTs in a symmetrical topology,” IEEE Power Electronics Specialists Conf., Jun. 1994,. vol. 2, pp. 1218–1225
[28] S. K. Han, H. K. Yoon, G.W. Moon, M. J. Youn, Y. H. Kim, and K. H. Lee, “A new active clamping zero-voltage switching PWM current-fed half-bridge converter,” IEEE Trans. Power Electronics, vol. 20, no. 6, pp. 1271–1279, Nov. 2005.
[29] S. J. Jang, C. Y. Won, B. K. Lee, and J. Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 332–340, Jun. 2007.
[30] Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. Power Electronics, vol. 19, no. 1, pp. 169–175, Jan. 2004.
[31] 李昭翰,’’無變壓器型之四倍壓直流轉換器建模與分析”,國立清華大學碩士論文,中華民國一百年七月。
[32] Y. Zhao, W. Li, Y. Deng and X. He, “Analysis, design, and experimentation of an isolated ZVT boost converter with coupled inductors,” IEEE Trans. Power Electronics, vol. 26, no. 2, pp. 541–550, Feb. 2011
[33] J. S. Yoo, J. Y. Choi, M. K. Yang and W. Y. Choi, “Dual active-clamped step-up dc-dc converter with reduced voltage stress for low-dc renewable energy sources,” IEEE Applied Power Electronics Conf., Mar. 2012, pp. 1303–1306
[34] D. Wang, X He, and J. Shi, “Design and analysis of an interleaved flyback–forward boost converter with the current autobalance characteristic,” IEEE Trans. Power Electronics, vol. 25, no. 2, pp. 489–498, Feb. 2010
[35] W. Li, and X. He, “A family of isolated interleaved boost and buck converters with winding-cross-coupled inductors,” IEEE Trans. Power Electronics, vol. 23, no. 6, pp. 3164–3173, Nov. 2008
[36] F. Cao, Y. Wang, J. Suo, and C. Qi, Q. Tu, “Performance analysis and circuit design of an interleaved active clamp zero voltage switching flyback-forward boost converter,” in Proc. IEEE Industrial Electronics Soc. Conf, Nov 2010, pp. 639–643
[37] T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, “Novel isolated high-step-up DC–DC converter with voltage lift,” IEEE Trans. Industrial Electronics, Nov. 2011 (Early Access Articles)
[38] S. S. Ang, Power Switching Converters. Marcel Dekker, Inc. 1995.
[39] R. W. Erickson and D. Maksimovics, Fundamentals of Power Electronics. Kluwer Academic Publisher, Inc. 2001.
[40] M. Valentini, A. Raducu, D. Sera, and R. Teodorescu, “PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation,” in Proc. IEEE Optimization of Electrical and Electronic Equipment Conf, May 2008, pp. 433–438

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊