跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅文韋
研究生(外文):Luo, Wen-Wei
論文名稱:無網格法在薄板幾何非線性分析之應用
論文名稱(外文):Applications of Meshless Methods to Geometric Nonlinear Theory of Thin Plates
指導教授:郭世榮郭世榮引用關係
指導教授(外文):Kuo, Shyh-Rong
口試委員:姚忠達范佳銘
口試委員(外文):Yau, Jong-DarFan, Chia-Ming
口試日期:2016-07-03
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:大變形理論力平衡截面力(彎矩)組成律轉角自由度預測位移迭代修正無網格法
外文關鍵詞:total Lagrangian formulationforce equilibriumrigid-body motion rulerotation freedompredict displacementiterative correctmeshless methods
相關次數:
  • 被引用被引用:4
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是應用大變形理論,提出具有「大變形、大轉角」條件下之薄板幾何非線性理論,本文首先建立平板在大轉角變形的位移表示式,依力學的合理性,得到板在變形狀態沿板厚方向的彎矩及力平衡方程式。與此同時,由大變形理論著手,直接建立截面力(彎矩)的組成律,此組成律可分成二部分,第一類截面力(基於第一類P.K.應力張量) 與剛體位移(轉角)有關、第二類截面力(基於第二類P.K.應力張量)則與平板中面應變(曲率)有關,接著在處裡平面外問題時,在邊界上增設了轉角自由度,使在分析兩面板接合問題時,可使交界處確實接合,在非線性分析上,則採用了U.L.法預測位移,有效降低了由T.L.法預測位移的困難度,並藉T.L.法迭代修正,最後則應用無網格法進行實例分析。
This study intends to develop a geometric nonlinear plate theory with consideration of finite deformations and rotations. The displacement components of a plate element under finite rotations can be formulated and then the equations of equilibrium along edge forces and moments at deformed state based on the rationality of mechanics will be expressed. Meanwhile, the cross sectional forces of the plate can be represented in terms of constitutive law considering finite deformations, in which the first kind of cross sectional forces (in terms of the first kind P.K. stress tensor) are related to rigid body motions, and the second kind cross sectional forces (in terms of the second kind P.K. stress tensor) are expressed by the mid-plane strains (curvatures) of the plate. Finally, the degree of freedom for rotation is introduced to deal with the continuity on the boundary between two plates. The updated Lagrange (U.L.) method is adopted to improve the efficiency of displacement prediction, and, the total Lagrange (T.L.) method is selected to correct the accuracy of displacement prediction. Whole case study will be analyzed through meshless method.
謝誌 I
中文摘要 II
ABSTRACT III
目 次 IV
圖目次 VI
表目次 VIII
第一章 導論 1
1-1 文獻回顧 1
1-2 研究方法 2
1-3 研究內容 3
第二章 平板幾何非線性理論推導-採用T.L.法 4
2-1 前言 4
2-2 基本物理量—建立變形狀態的截面彎矩 5
2-3 應變表示式 7
2-4 第一類及第二類截面力(彎矩)組成律—剛體運動 8
2-5 力平衡方程式 10
2-6 U.L.推演法的表示式 12
第三章 無網格數值分析方法概述 20
3-1 前言 20
3-2 無網格分析方法介紹 20
3-3 平面外的線性問題-考慮邊界轉角自由度 24
第四章 幾何非線性數值分析方法探討 29
4-1 前言 29
4-2 預測階段-應用U.L.增量表示式 29
4-3 修正階段-應用T.L.增量表示式 35
4-4 數值分析方法-弧長法 37
4-5 分析流程 40
第五章 實例分析 43
5-1 前言 43
5-2 線性分析-面內問題 43
5-3 線性分析-面外問題 51
5-4 幾何非線性分析-面內問題 56
第六章 結論 66
6-1 結論 66
6-2 展望 67
參考文獻 68

1.Arregui, I., Destuynder, P. and Salaun, M., (1997). "An Eulerian approach for large displacements of thin shells including geometric non-linearities," Computer Methods in Applied Mechanics and Engineering., Vol 140, Issue 3-4, pp. 361-381
2.Alashti, R. A. and Ahmadi, S. A., (2014). "Buckling of imperfect thick cylindrical shells and curved panels with different boundary conditions under external pressure," Journal of Theoretical and Applied Mechanics., Vol. 52, Issue 1, pp. 25-36.
3.Bathe, K. J. and Bolourchi, S., (1979). "A geometric and material nonlinear plate and shell element," Computes & Structures, Vol. 11, Issues 1-2, pp. 23-48.
4.Benito, J. J., Urena, F., Gavete, L. and Alonso, B., (2008). " Application of the Generalized Finite Difference Method to improve the approximated solution of pdes," Cmes-Computer Modeling In Engineering & Sciences, Vol. 38, Issues 1, pp. 39-58.
5.Cai, Y. C. and Atluri, S. N., (2012). "Large Rotation Analyses of Plate/Shell Structures Based on the Primal Variational Principle and a Fully Nonlinear Theory in the Updated Lagrangian Co-Rotational Reference Frame," Cmes-Computer Modeling In Engineering & Sciences., Vol 83, Issue 3, pp. 249-273
6.Dong, L. T., El-Gizawy, A. S., Juhany, K. A. and Atluri, S. N., (2015). "A simple locking-alleviated 3D 8-Node Mixed-Collocation C-0 finite element with Over-Integration, for Functionally-Graded and laminated Thick-Section plates and shells, with & without Z-Pins," Cmc-Computers Materials & Continua., Vol 41, Issue 3, pp. 163-192
7.Fan, C. M., Huang, Y. K., Li, P. W. and Chiu, C. L., (2014). "Application of the Generalized Finite-Difference Method to Inverse Biharmonic Boundary-Value Problems," Numerical Heat Transfer, Part B-Fundamentals., Vol 65, Issue 2, pp. 129-154
8.Flores, F. G., (2015). "Implementation of the refined zigzag theory in shell elements with large displacements and rotations," Composite Structures., Vol 118, pp. 560-570
9.Ferreira, A. J. M. and Barbosa, J. T., (2000). "Buckling behaviour of composite shells," Compos. Struct., Vol. 50, Issue 1, pp. 93-98.
10.Golzan, B. S. and Showkati, H., (2008). "Buckling of thin-walled conical shells under uniform external pressure," Thin-Walled Struct., Vol. 46, Issue 5, pp. 516-529.
11.Kim, S. E. and Kim, C. S., (2002). "Buckling strength of cylindrical shell and tank subjected to axially compressive loads," Thin-Walled Struct., Vol. 40, Issue 4, pp. 329-353.
12.Krasovsky, V., Marchenko, V. and Schmidt, R., (2011). "Deformation and buckling of axially compressed cylindrical shells with local loads in numerical simulation and experiments," Thin-Walled Structures., Vol. 49, pp. 576-580.
13.Kuo, S. R., Yang, J. and Yang, Y. B., (2015). "A novel approach for buckling analysis of pretwisted spatially curved beams by state equations," International Journal of Structural Stability and Dynamics, DOI: 10.1142/S021945541550011X.
14.Kuo, S. R. and Yang, Y. B., (2013). "A rigid-body-qualified plate theory for the nonlinear analysis of structures involving torsional actions," Eng. Struct., Vol 47, pp. 2-15.
15.Kuo, S. R. and Yau, J. D., (2012). "Buckling equations of orthotropic thin plates," Chin. J. Mech., Vol. 8, Issue 23, pp. 555-567.
16.Kuo, S. R., Chi, C. C. and Yang, Y. B., (2009). "A complete stability theory for the kirchhoff thin plate under all kinds of actions" Journal of Marine Science and Technology, Vol. 17, Issue 3, pp. 180-193.
17.Kuo, S. R., Chi, C. C., Yeih, W. and Chang, J. R., (2006). "A reliable three-node triangular plate element satisfying rigid body rule and incremental force equilibrium condition," J. Chin. Inst. Eng., Vol. 29, Issue 4, pp. 619-632.
18.Lopez, S., (2013). "Three-dimensional finite rotations treatment based on a minimal set parameterization and vector space operations in beam elements," Computational Mechanics., Vol 52, Issue 2, pp. 377-399
19.Li, M. R. and Zhan, F. L., (2000). " The finite deformation theory for beam, plate and shell. Part V. The shell element with drilling degree of freedom based on Biot strain," Computer Methods in Applied Mechanics and Engineering., Vol 189, Issue 3, pp. 743-759
20.Li, M. R. and Zhan, F. L., (2000). "The finite deformation theory for beam, plate and shell. Part IV. The Fe formulation of Mindlin plate and shell based on Green–Lagrangian strain," Computer Methods in Applied Mechanics and Engineering., Vol 182, Issue 1-2, pp. 187-203
21.Li, S. H., (2015). "Reflection on 'finite rotation problem' in plate and shell theories and in finite element formulation-Back to basics," International Journal of Mechanical Sciences., Vol 91, pp. 12-17
22.Li, Z. M. and Lin, Z. Q., (2010). "Non-linear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads," Composite Structures, Vol. 92, pp. 553-567.
23.Li, Z. M. and Shen, H. S., (2008). "Postbuckling of shear-deformable anisotropic laminated cylindrical shells under axial compression," Int. J. Struct. Stability and Dyn., Vol. 8, Issue 3, pp. 389-414.
24.Lin, J., Naceur, H., Coutellier, D. and Laksimi, A., (2014). "Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations," Int. J. of nonlinear Mech., Vol. 65, pp. 1-13.
25.Li, P. W., Fan, C.M., Chen, C.Y. and Ku, C.M., (2014)."Generalized Finite
Difference Method for Numerical Solutions of Density-drivenGroundwater Flows," Cmes-Computer Modeling in Engineering & Sciences., Vol. 101, Issue 5, pp. 319-350.
26.Rust, Wilhelm., (2015). "Non-Linear Finite Element Analysis in Structural Mechanics," Springer International
27.Singh, S. and Patel, B. P., (2015). "Nonlinear elastic properties of graphene sheet under finite deformation," Composite Structures., Vol 119, pp. 412-421
28.Stolarski, H., Gilmanov, A. and Sotiropoulos, F., (2013). " Nonlinear rotation-free three-node shell finite element formulation," International Journal for Numerical Methods In Engineering., Vol 95, Issue 9, pp. 740-770
29.Sofiyev, A. H. and Kuruoglu, N., (2013). "Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium," Int. J. of Pressure Vessels and Piping, Vol. 107, pp. 38-49.
30.Sofiyev, A. H., Najafov, A. M. and Kuruoglu, N., (2012). "The effect of non-homogeneity on the non-linear buckling behavior of laminated orthotropic conical shells," Composites Part B: Engineering, Vol. 43, Issue 3, pp. 1196-1206.
31.Turkalj, G., (2015). "A beam formulation for large displacement analysis of composite frames with semi-rigid connections," Composite Structures., Vol 134, pp. 237-246
32.Wang, X., Yang, W. D. and Sheng, G. G., (2014). "Non-linear buckling for the surface rectangular delamination of laminated piezoelectric shells," Applied Mathematical Modelling, Vol. 38, pp. 374-383.
33.Yang, Y. B., Kuo, S. R. and Yau, J. D., (2014). "A new buckling theory for curved beams of solid cross sections derived from rigid body and force equilibrium considerations," The IES Journal Part A: Civil & Structural Engineering, Vol. 7, Issue 2, pp. 63-72.
34.Yang, Y. B., and Kuo, S. R., (1994). Theory and Analysis of Nonlinear Framed Structures, Englewood Cliffs, N.J: Prentice Hall.
35.Yang, J. S. and Xia, P. Q., (2015). "Corotational nonlinear dynamic analysis of thin-shell structures with finite rotations," Aiaa Journal., Vol 53, Issue 3, pp. 663-677
36.Yang, J. S. and Xia, P. Q., (2012). "Finite element corotational formulation for geometric nonlinear analysis of thin shells with large rotation and small strain," Science China-Technological Sciences., Vol 55, Issue 11, pp. 3142-3152
37.Yau, J. D. and Kuo, S. R., (2012). "Geometrical Stiffness of Thin-Walled I-Beam Element Based on Rigid-Beam Assemblage Concept," Journal of Mechanics, Vol 28, Issue 1, pp. 97-106.
38.Zhu, Y., Luo, X. Y., Wang, H. M., Ogden, R. W. and Berry, C., (2013). "Three-dimensional non-linear buckling of thick-walled elastic tubes under pressure," Int. J. of nonlinear Mech., Vol. 48, pp. 1-14.
39.呂良正, (1989)。"桁架及構架之非線性理論", 國立臺灣大學土木工程研究所碩士論文。
40.李明瑞, (2003)。"梁板殼的幾何大變形—從近似的非線性理論到有限變形理論"。力學與實踐,25(3)
41.郭士榮, "空間構架的靜力及動力及動力穩定理論", 國立臺灣大學土木工程研究所博士論文, 1991
42.紀志昌, "剛體運動法則與增量力平衡在板殼結構幾何非線性理論分析之應用", 國立台灣海洋大學河海工程研究所博士論文, 2006
43.江英良, "平板大變形理論分析", 國立成功大學土木工程研究所碩士論文, 2006
44.江淳竹, "基於狀態變數與Hermite型制點法之移動最小二乘法求解波松問題", 國立成功大學土木工程研究所碩士論文, 2014
45.張建忠, "以廣義有限差分法求解二維速度-渦度方程式及其平行化效率評估", 國立台灣海洋大學河海工程研究所碩士論文, 2015
46.范佳銘, "無網格法上課講義"
47.馮元楨, "連續介質力學初級教程"

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top