[1]T. L. Thompson, J. T. Jr. Yates, “Surface science studies of the photoactivation of TiO2: new photochemical processes,” Chem. Rev., 106, 2006, pp. 4428–4453.
[2]D. J. Yang, H. W. Liu, “ An efficient photocatalyst structure: TiO2 nanofibers with a shell of anatase nanocrystals,” J. Am. Chem. Soc., 131, 2009, pp. 17885–17893.
[3]J. G. Yu, Y. R. Su, B. Cheng, “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporoustitania,” Adv. Funct. Mater., 17, 2007, pp. 1984–1990.
[4]S. Horikoshi, N. Serpone, Y. Hisamatsu, H. Hidaka, “ Photocatalytic degradation of PVC plastic on nanoscale titanium dioxide,” Environ.Sci. Technol., 32, 1998, pp. 4010–4016.
[5]J. Shang, M. Chai, Y. F. Zhu, “ Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst,” J. Solid State Chem., 174, 2003, pp. 104–110.
[6]L. Zan, W. J. Fa, S. L. Wang, “Novel photodegradable low-density polyethylene-TiO2 nanocomposite film,” Environ. Sci. Technol., 40, 2006, pp. 1681–1685.
[7]X. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, “Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation,” Appl. Surf. Sci., 254, 2008, pp. 1825–1829.
[8]S. P. Vijayalakshmi, G.Madras, “Photocatalytic degradation of poly (ethylene oxide) and polyacrylamide. J. Appl. Polym.,” Sci., 100, 2006, pp. 3997–4003.
[9]A. Marimuthu, G. Madras, “Photocatalytic oxidative degradation of poly (alkyl acrylates) with nano TiO2. Ind. Eng,” Chem. Res., 47, 2008, pp. 2182–2190.
[10]N. Daraboina, G. Madras, “Thermal and photocatalytic degradation of poly (methyl methacrylate), poly (butyl methacrylate), and their copolymers,” Ind. Eng. Chem. Res., 47, 2008, pp. 6828–6834.
[11]M. A. Banash, S. G. Croll, “A quantitative study of polymeric dispersant adsorption onto oxide-coated titania pigments,” Prog. Org. Coat., 35, 1999, pp. 37–44.
[12]C. Hyeok, E. Stathatos, D. Dionysiou, “Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles,” Top. Catal., 44, 2007, pp. 513–521.
[13]M. Yamahoto, M. Ohata, “New macromolecular silane coupling agents synthesized by living anionic polymerization: grafting of these polymers onto inorganic particles and metals,” Prog. Org. Coat., 27, 1996, pp. 277–285.
[14]Q. Shao, C. G. Wang, Y. F. Zhu, S. S. Ge, “Surface modification and characterization of nanometer TiO2 for nanometer styrene-acrylate emulsion polymerization,” Funct. Mater., N37, 2006, pp. 642–645.
[15]J. Chen, Y. Zhou, Q. L. Nan, Y. Q. Sun, X. Y. Ye, Z. Q. Wang, “Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites,” Appl. Surf. Sci., 253, 2007, pp. 9154–9158.
[16]B. Hojjati, R. Sui, P. A. Charpentier, “Synthesis of TiO2/PAA nanocomposite by RAFT polymerization,” Polymer, 48, 2007, pp. 5850–5858.
[17]M. Takahashi, K. Mita, H. Toyuki, “Pt-TiO2 thin films on glass substrates as efficient photocatalysts,” J. Mater. Sci., 24, 1989, pp. 243–246.
[18]J. Papp, S. Shen, R. Kershaw, K. Dwight, A. Wold, “Titanium (IV) oxide photocatalysts with palladium,” Chem. Mater., 5, 1993, pp. 284–288.
[19]M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi, “Potocatalysis on Ti-Al binary metal oxides: enhancement of the photocatalytic activity of TiO2 species,” J. Phys. Chem., 92, 1988, pp. 438–440.
[20]H. J. F. H. Jansen, A. J. Freeman. “Total energy full potential linearized augmented plane wave (FLAPW) method for bulk solids: electronic and structural properties of tungsten,” Phys. Rev., B30, 1984, pp. 561–569.
[21]W. C. Lin, W. D. Yang “Effect of iron (III)-doping on the photocatalytic activity of titanium dioxide catalysts for methylene blue degradation,” Appl. Mech. Mater., 117-119, 2012, pp. 1088–1091.
[22]A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode, ” Nature, 238, 1972, pp. 37–38.
[23]B. lian, Y. Zhong, “Phase Diagrams for Ceramists,” J. Am. Ceram. Soc., 76, 1975, pp. 4150–4999.
[24]U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Ref., 48, 2003, pp. 53–229.
[25]A. L. Linsebigier, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surface: principles, mechanism, and selected results,” Chem. Rev., 95, 1995, pp. 735–758.
[26]J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Jr. Richardson, J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K,” J. Am. Chem. Soc., 109, 1987, pp. 3639–3646.
[27]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal., B., 31, 2001, pp. 145–157.
[28]M. R. Hoffmann, S. T. Martin, W. Cho, D. W. Bahnemann, “Environmental applications of semiconductor photocatalysts,” Chem. Rev., 95, 1995, pp. 69–96.
[29]陳慧英,黃定加,朱秦億,“溶膠凝膠法在薄膜製備上的應用”,化工技術,第七卷,第十一期,1999,pp. 152–167。[30]H. Sakai, H. Kawahara, M. Shimazaki, M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition,” Langmuir., 14, 1998, pp. 2208–2212.
[31]C. Su, B. Y. Hong, C. M. Tseng, “Sol-gel preparation and photocatalysis of titanium dioxide,” Catal. Today., 96, 2004, pp. 119–126.
[32]G. Pecchi, P. Reyes, P. Sanhueza, J. Villasenor, “Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts,” Chemosphere., 43, 2001, pp. 141–146.
[33]王奕凱,陳建志,呂春美,“可見光激發型光觸媒簡介”,環安簡訊電子報,第四十三期,2004。
[34]J. Yu, X. Zhao, Q. Zhao, “Effect of surface structure on photocatalytic oh TiO2 thin films prepared by sol-gel method,” Thin Solid Films., 379, 2000, pp. 7–14.
[35]J. Yu, X. Zhao, Q. Zhao, “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method,” Mater. Chem. Phys., 69, 2001, pp. 25–29
[36]B. H. Juárez, M. Ibizate, J. M. Palacios, C. Lopez, “High-Energy Photonic Bandgap in Sb2S3 Inverse Opals by Sulfidation Processing,” Adv. Mater., 15, 2003, pp. 319–323.
[37]W. J. Lou, M. Chen, X. B. Wang, W. M. Liu, “Novel Single Source Precursors Approach to Prepare Highly Uniform Bi2S3 and Sb2S3 Nanorods via a Solvothermal Treatment,” Chem. Mater., 19, 2007, pp. 872–878.
[38]X. B. Cao, L. Gu, W. C. Wang, W. J. Gao, L. J. Zhuge, Y. H. Li, “A solvothermal crystallization route to the preparation of microsized hollow cones of quasi-2D antimony sulfide,” J. Cryst. Growth., 286, 2006, pp. 96–101.
[39]G. Xie, Z. P. Qiao, M. H. Zong, X. M. Chen, S. L. Gao, “A single-source approach to Bi2S3 and Sb2S3 nanorods via hydrothermal treatment,” Cryst. Growth., 4 , 2004, pp. 513–516.
[40]K. Q. Li, F. Q. Huang, X. P. Lin, “Pristine narrow-bandgap Sb2S3 as a high-efficiency visible-light responsive photocatalyst,” Scr. Mater., 58, 2008, pp. 834–837.
[41]J. Jiang, S. H. Yu, W. T. Yao, H. Ge, G. Z. Zheng, “Morphogenesis and Crystallization of Bi2S3 Nanostructures by an Ionic Liquid-Assisted Templating Route: Synthesis, Formation Mechanism, and Properties,” Chem. Mater., 17, 2005, pp. 6094–6100.
[42]K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, “Formation, characterization and sintering of alkoxy-derived bismuth vanadate,” Mater. Res. Bull., 27, 1992, pp. 823–830.
[43]X. H. Liu, J. Q. Wang, J. Y. Zhang, S. R. Yang, “Sol–gel-template synthesis of ZnO nanotubes and its coaxial nanocomposites of LiMn2O4/ZnO,” Mater. Sci. Eng., 430, 2006, pp. 248–253.
[44]Q. A. Zhu, M. Gong, C. Zhang, G. B. Yong, S. Xiang, “Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach,” J. Cryst. Growth., 311, 2009, pp. 3651–3655.
[45]T. H. Ji, S. F. Hou, H. Y. Du, J. Y. Sun, “Preparation and Characterization of Hexagonal WO3 Nanobelts,” Chin. J. Inorg, Chem., 25, 2009, pp. 818–822.
[46]L. Zhang, D. Chen, X. Jiao, J. Phys, “ Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties,” Chem. B, 110, 2006, pp. 2668–2673.
[47]H. Zhang, L. J. Wang, “Synthesis and characterization of Bi2S3 nanorods by solvothermal method in polyol media,” Mater. Lett., 61, 2007, pp. 1667–1670.
[48]J. Ota, S. K. Srivastava, “Tartaric Acid Assisted Growth of Sb2S3 Nanorods by a Simple Wet Chemical Method,” Cryst. Growth Des., 7, 2007, pp. 343–347.
[49]Z. R. Geng, M. X. Wang, G. H. Yue, P. X. Yan, “Growth of single-crystal Sb2S3 nanowires via solvothermal route,” J. Cryst. Growth., 310, 2008, pp. 341–344.
[50]鄭森源,“以高級氧化法處理水中染料之研究”,碩士論文,崑山科技大學,2006。[51]鐘家松,向衛東,劉麗君,楊晰宇,蔡文,張景峰,梁曉娟,“生物分子輔助溶劑熱合成硫化銻奈米棒”,高等學校化學學報,溫州大學化學與材料工程學院,同濟大學材料與工程學院,2010。
[52]L. Wu, H. Xu, Q. Han, X. Wang, “Large-scale synthesis of double cauliflower-like Sb2S3 microcrystallines by hydrothermal method,” J. Alloy. Compd., 572, 2013, pp. 56–61.