跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彧宸
研究生(外文):Yu-Chen Wang
論文名稱:以可見光驅動光觸媒將聚乙二醇降解之研究
論文名稱(外文):Photocatalytic degradation of polyethylene glycol using visible-light driven photocatalysts
指導教授:林文崇林文崇引用關係
指導教授(外文):Wen-Churng Lin
口試委員:楊乾信楊文都
口試委員(外文):Chien-Hsin YangWen-Duo Yang
口試日期:2014-07-21
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:光催化降解聚乙二醇改質二氧化鈦乙醯丙酮酸鐵硫化銻
外文關鍵詞:photocatalytic degradationpolyethylene glycolmodified titanium dioxideferric acetylacetonateantimony trisulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:501
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
由於各種工業上及/或一般生活上大量的使用各種合成高分子(聚合物),且有很大比例的高分子最後被當成廢棄物給丟掉,污染了我們的環境!而這些廢棄高分子中有絕大部分難被微生物給分解,亦難以傳統的化學氧化劑予以氧化破壞。本計畫研究以可見光型光觸媒之光催化法將多種聚乙二醇,如:PEG 2000、PEG 4000、PEG 6000及PEG 20000等予以降解破壞。
本研究先利用乙醯丙酮(配位劑)與異丙氧基鈦在異丙醇溶劑中行配位反應,以配製成烷氧溶液,並藉由溶膠-凝膠法合成具光催化性能之奈米級純二氧化鈦光觸媒粉末。銳鈦礦的二氧化鈦奈米顆粒表面可經由乙醯丙酮酸鐵(或稱戊二酮化鐵)錯合物修飾改質來提升其於聚合物中的分散性以及光催化活性。本研究分別針對使用修飾改質的二氧化鈦及未修飾改質的二氧化鈦將三種不同分子量的聚乙二醇(PEG 2000、PEG 4000及PEG 6000)光催化降解之性能做一廣泛性的研究比較。
硫化銻(Sb2S3)奈米棒具有可見光催化活性,可用來當光觸媒使用。研究中另採用回流法來合成多種硫化銻奈米棒,再藉由X光繞射分析(XRD)、X光電子能譜(XPS)、BET比表面積分析(BET)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)以及紫外光-可見光光譜(UV-Vis)等來進行其微結構與特性的分析,並應用於將聚乙二醇(PEG 20000)光催化降解之性能研究。降解過程中,聚乙二醇的質量、分子量皆減少,分子量分佈指數增加等,這些符合降解特性的研究皆有仔細的探討。

Large amounts of synthetic polymer are used for various industrial and/or general applications. A significant proportion appears in the form of waste and is discarded into the environment. Most of them are recalcitrant to biodegradation and conventional chemical oxidation using oxidants. In this project, the decomposition of various PEG (e.g., PEG 2000, PEG 4000, PEG 6000, and PEG 20000) by means of visible-light photocatalytic degradation has been studied.
  Photocatalytic nanocrystalline neat TiO2 powders were prepared from alkoxide solutions via the sol-gel method. The alkoxide solutions were formed by adding titanium isopropoxide and acetylacetone (as a chelating reagent) to isopropanol. The surface of anatase TiO2 nanoparticles could be modified by ferric acetylacetonate complex Fe(acac)3. This modification could improve the dispersion of TiO2 in polymer and also the photocatalytic activity. The photodegradation of PEG (PEG 2000, PEG 4000, and PEG 6000) catalyzed by modified TiO2 were extensively studied in comparison with that by neat TiO2.
  Antimony trisulfide (Sb2S3) nanorods can be employed as photocatalyst with visible-light activity. In this work, different crystal form antimony trisulfide nanorods were synthesized using the refluxing method. The phase, morphologies, compositions and optical properties of the as-prepared Sb2S3 nanorods have been carried out by X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption (Brunauer–Emmett–Teller -specific surface area), scanning electron microscopy, transmission electron microscopy, and Ultraviolet-Visible spectroscopy. The photodegradation of PEG (PEG 20000) catalyzed by visible-light driven Sb2S3 photocatalysts were extensively studied. During the degradation, we could observe that the polymer lost its weight gradually, the molecular weight of the polymer decreased, and the molecular weight distribution index increased. The results accorded with the degradation characters have been discussed in detail.

目錄

摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的及內容 1
1.2.1 研究目的 1
1.2.2 研究內容 1
第二章 文獻回顧 2
2.1光催化降解聚合物 2
2.2二氧化鈦光觸媒 4
2.2.1二氧化鈦的構造及特性 4
2.2.2 二氧化鈦光催化反應 7
2.3 二氧化鈦的製備 10
2.3.1 溶膠凝膠法(sol-gel) 10
2.3.2 溶膠凝膠法之原理 12
2.3.3 溶膠凝膠法之反應機制 13
2.3.4 溶膠凝膠的影響因素 15
2.3.5二氧化鈦的表面結構 16
2.4硫化銻光觸媒 16
第三章 實驗方法與步驟 18
3.1 實驗藥品 18
3.2 實驗儀器 19
3.3 實驗裝置 20
3.4 二氧化鈦光觸媒之配製 23
3.4.1 二氧化鈦粉末的配製 23
3.4.2 經摻雜之二氧化鈦的配製 24
3.4.2.1 以Fe(acac)3來修飾改質TiO2 24
3.5硫化銻光觸媒奈米棒的合成 25
3.6二氧化鈦物性分析 25
3.6.1 BET比表面積分析(BET) 25
3.6.2 X光繞射儀分析(XRD) 25
3.6.3 穿透式電子顯微鏡分析(TEM) 26
3.6.4 X光能量散佈分析(EDS) 26
3.6.5 X光電子能譜儀分析(XPS) 26
3.6.6紫外光-可見光光譜儀分析(UV-Vis) 26
3.6.7 掃描式電子顯微鏡分析(SEM) 27
3.7植入改質TiO2之PEG複合材的製備 27
3.8含光觸媒之PEG複合材的特性分析與光催化降解 27
3.9植入光觸媒之PEG複合材的製備 27
3.10含光觸媒之PEG複合材的特性分析與光催化降解 28
3.11水中亞甲基藍之光催化降解實驗 28
第四章 結果與討論 29
4.1改質二氧化鈦光觸媒部份 29
4.1.1進行各觸媒的特徵(特性)分析 29
4.1.2進行各觸媒在可見光下對亞甲基藍的光分解性能分析 36
4.1.3各觸媒在可見光下對PEG的光分解性能分析 37
4.2硫化銻光觸媒部份 45
4.2.1進行觸媒的特徵(特性)分析 45
4.2.2進行各觸媒在可見光下對亞甲基藍的光分解性能分析 63
4.2.3各觸媒在可見光下對PEG的光分解性能分析 66
第五章 結論 71
第六章 參考文獻 72

[1]T. L. Thompson, J. T. Jr. Yates, “Surface science studies of the photoactivation of TiO2: new photochemical processes,” Chem. Rev., 106, 2006, pp. 4428–4453.

[2]D. J. Yang, H. W. Liu, “ An efficient photocatalyst structure: TiO2 nanofibers with a shell of anatase nanocrystals,” J. Am. Chem. Soc., 131, 2009, pp. 17885–17893.

[3]J. G. Yu, Y. R. Su, B. Cheng, “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporoustitania,” Adv. Funct. Mater., 17, 2007, pp. 1984–1990.

[4]S. Horikoshi, N. Serpone, Y. Hisamatsu, H. Hidaka, “ Photocatalytic degradation of PVC plastic on nanoscale titanium dioxide,” Environ.Sci. Technol., 32, 1998, pp. 4010–4016.

[5]J. Shang, M. Chai, Y. F. Zhu, “ Solid-phase photocatalytic degradation of polystyrene plastic with TiO2 as photocatalyst,” J. Solid State Chem., 174, 2003, pp. 104–110.

[6]L. Zan, W. J. Fa, S. L. Wang, “Novel photodegradable low-density polyethylene-TiO2 nanocomposite film,” Environ. Sci. Technol., 40, 2006, pp. 1681–1685.

[7]X. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu, “Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation,” Appl. Surf. Sci., 254, 2008, pp. 1825–1829.

[8]S. P. Vijayalakshmi, G.Madras, “Photocatalytic degradation of poly (ethylene oxide) and polyacrylamide. J. Appl. Polym.,” Sci., 100, 2006, pp. 3997–4003.

[9]A. Marimuthu, G. Madras, “Photocatalytic oxidative degradation of poly (alkyl acrylates) with nano TiO2. Ind. Eng,” Chem. Res., 47, 2008, pp. 2182–2190.

[10]N. Daraboina, G. Madras, “Thermal and photocatalytic degradation of poly (methyl methacrylate), poly (butyl methacrylate), and their copolymers,” Ind. Eng. Chem. Res., 47, 2008, pp. 6828–6834.

[11]M. A. Banash, S. G. Croll, “A quantitative study of polymeric dispersant adsorption onto oxide-coated titania pigments,” Prog. Org. Coat., 35, 1999, pp. 37–44.

[12]C. Hyeok, E. Stathatos, D. Dionysiou, “Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles,” Top. Catal., 44, 2007, pp. 513–521.

[13]M. Yamahoto, M. Ohata, “New macromolecular silane coupling agents synthesized by living anionic polymerization: grafting of these polymers onto inorganic particles and metals,” Prog. Org. Coat., 27, 1996, pp. 277–285.

[14]Q. Shao, C. G. Wang, Y. F. Zhu, S. S. Ge, “Surface modification and characterization of nanometer TiO2 for nanometer styrene-acrylate emulsion polymerization,” Funct. Mater., N37, 2006, pp. 642–645.

[15]J. Chen, Y. Zhou, Q. L. Nan, Y. Q. Sun, X. Y. Ye, Z. Q. Wang, “Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites,” Appl. Surf. Sci., 253, 2007, pp. 9154–9158.

[16]B. Hojjati, R. Sui, P. A. Charpentier, “Synthesis of TiO2/PAA nanocomposite by RAFT polymerization,” Polymer, 48, 2007, pp. 5850–5858.

[17]M. Takahashi, K. Mita, H. Toyuki, “Pt-TiO2 thin films on glass substrates as efficient photocatalysts,” J. Mater. Sci., 24, 1989, pp. 243–246.

[18]J. Papp, S. Shen, R. Kershaw, K. Dwight, A. Wold, “Titanium (IV) oxide photocatalysts with palladium,” Chem. Mater., 5, 1993, pp. 284–288.

[19]M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi, “Potocatalysis on Ti-Al binary metal oxides: enhancement of the photocatalytic activity of TiO2 species,” J. Phys. Chem., 92, 1988, pp. 438–440.

[20]H. J. F. H. Jansen, A. J. Freeman. “Total energy full potential linearized augmented plane wave (FLAPW) method for bulk solids: electronic and structural properties of tungsten,” Phys. Rev., B30, 1984, pp. 561–569.

[21]W. C. Lin, W. D. Yang “Effect of iron (III)-doping on the photocatalytic activity of titanium dioxide catalysts for methylene blue degradation,” Appl. Mech. Mater., 117-119, 2012, pp. 1088–1091.

[22]A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode, ” Nature, 238, 1972, pp. 37–38.

[23]B. lian, Y. Zhong, “Phase Diagrams for Ceramists,” J. Am. Ceram. Soc., 76, 1975, pp. 4150–4999.

[24]U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Ref., 48, 2003, pp. 53–229.

[25]A. L. Linsebigier, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surface: principles, mechanism, and selected results,” Chem. Rev., 95, 1995, pp. 735–758.

[26]J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Jr. Richardson, J. V. Smith, “Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K,” J. Am. Chem. Soc., 109, 1987, pp. 3639–3646.

[27]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal., B., 31, 2001, pp. 145–157.

[28]M. R. Hoffmann, S. T. Martin, W. Cho, D. W. Bahnemann, “Environmental applications of semiconductor photocatalysts,” Chem. Rev., 95, 1995, pp. 69–96.

[29]陳慧英,黃定加,朱秦億,“溶膠凝膠法在薄膜製備上的應用”,化工技術,第七卷,第十一期,1999,pp. 152–167。

[30]H. Sakai, H. Kawahara, M. Shimazaki, M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition,” Langmuir., 14, 1998, pp. 2208–2212.

[31]C. Su, B. Y. Hong, C. M. Tseng, “Sol-gel preparation and photocatalysis of titanium dioxide,” Catal. Today., 96, 2004, pp. 119–126.

[32]G. Pecchi, P. Reyes, P. Sanhueza, J. Villasenor, “Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts,” Chemosphere., 43, 2001, pp. 141–146.

[33]王奕凱,陳建志,呂春美,“可見光激發型光觸媒簡介”,環安簡訊電子報,第四十三期,2004。

[34]J. Yu, X. Zhao, Q. Zhao, “Effect of surface structure on photocatalytic oh TiO2 thin films prepared by sol-gel method,” Thin Solid Films., 379, 2000, pp. 7–14.

[35]J. Yu, X. Zhao, Q. Zhao, “Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method,” Mater. Chem. Phys., 69, 2001, pp. 25–29
[36]B. H. Juárez, M. Ibizate, J. M. Palacios, C. Lopez, “High-Energy Photonic Bandgap in Sb2S3 Inverse Opals by Sulfidation Processing,” Adv. Mater., 15, 2003, pp. 319–323.

[37]W. J. Lou, M. Chen, X. B. Wang, W. M. Liu, “Novel Single Source Precursors Approach to Prepare Highly Uniform Bi2S3 and Sb2S3 Nanorods via a Solvothermal Treatment,” Chem. Mater., 19, 2007, pp. 872–878.

[38]X. B. Cao, L. Gu, W. C. Wang, W. J. Gao, L. J. Zhuge, Y. H. Li, “A solvothermal crystallization route to the preparation of microsized hollow cones of quasi-2D antimony sulfide,” J. Cryst. Growth., 286, 2006, pp. 96–101.

[39]G. Xie, Z. P. Qiao, M. H. Zong, X. M. Chen, S. L. Gao, “A single-source approach to Bi2S3 and Sb2S3 nanorods via hydrothermal treatment,” Cryst. Growth., 4 , 2004, pp. 513–516.

[40]K. Q. Li, F. Q. Huang, X. P. Lin, “Pristine narrow-bandgap Sb2S3 as a high-efficiency visible-light responsive photocatalyst,” Scr. Mater., 58, 2008, pp. 834–837.

[41]J. Jiang, S. H. Yu, W. T. Yao, H. Ge, G. Z. Zheng, “Morphogenesis and Crystallization of Bi2S3 Nanostructures by an Ionic Liquid-Assisted Templating Route:  Synthesis, Formation Mechanism, and Properties,” Chem. Mater., 17, 2005, pp. 6094–6100.

[42]K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, “Formation, characterization and sintering of alkoxy-derived bismuth vanadate,” Mater. Res. Bull., 27, 1992, pp. 823–830.

[43]X. H. Liu, J. Q. Wang, J. Y. Zhang, S. R. Yang, “Sol–gel-template synthesis of ZnO nanotubes and its coaxial nanocomposites of LiMn2O4/ZnO,” Mater. Sci. Eng., 430, 2006, pp. 248–253.

[44]Q. A. Zhu, M. Gong, C. Zhang, G. B. Yong, S. Xiang, “Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach,” J. Cryst. Growth., 311, 2009, pp. 3651–3655.

[45]T. H. Ji, S. F. Hou, H. Y. Du, J. Y. Sun, “Preparation and Characterization of Hexagonal WO3 Nanobelts,” Chin. J. Inorg, Chem., 25, 2009, pp. 818–822.

[46]L. Zhang, D. Chen, X. Jiao, J. Phys, “ Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties,” Chem. B, 110, 2006, pp. 2668–2673.

[47]H. Zhang, L. J. Wang, “Synthesis and characterization of Bi2S3 nanorods by solvothermal method in polyol media,” Mater. Lett., 61, 2007, pp. 1667–1670.

[48]J. Ota, S. K. Srivastava, “Tartaric Acid Assisted Growth of Sb2S3 Nanorods by a Simple Wet Chemical Method,” Cryst. Growth Des., 7, 2007, pp. 343–347.

[49]Z. R. Geng, M. X. Wang, G. H. Yue, P. X. Yan, “Growth of single-crystal Sb2S3 nanowires via solvothermal route,” J. Cryst. Growth., 310, 2008, pp. 341–344.

[50]鄭森源,“以高級氧化法處理水中染料之研究”,碩士論文,崑山科技大學,2006。

[51]鐘家松,向衛東,劉麗君,楊晰宇,蔡文,張景峰,梁曉娟,“生物分子輔助溶劑熱合成硫化銻奈米棒”,高等學校化學學報,溫州大學化學與材料工程學院,同濟大學材料與工程學院,2010。

[52]L. Wu, H. Xu, Q. Han, X. Wang, “Large-scale synthesis of double cauliflower-like Sb2S3 microcrystallines by hydrothermal method,” J. Alloy. Compd., 572, 2013, pp. 56–61.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top