參考文獻
[1] W. H. Crouse, and D. L. Anglin 1985, Automotive Mechanics, McGraw-Hill Inc.
[2] 蔡隆文著,許正和編譯,2003,機構設計,高立圖書。
[3] K. H. Hunt, 1973, “Constant-Velocity Shaft Couplings: A General Theory,” Trans. ASME, J. Eng. Ind., Vol. 95, pp. 455-464.
[4] Thompson CVcoupling Website , http://www.cvcoupling.com
[5] V. Krishna, and N. G. Naganathan, 2000, “Analysis of Driveline Loads in an Automotive Powertrain with Multiple Cardan Joint,” Proc. ImechE., Part D, Vol.214, pp.509-522.
[6] J. Nango, and K. Watanabe, 2002, “Static Analysis of Spatial 7R Link Constant-Velocity Joints Extended Shaft Angle,” Proc. ASME, Des. Eng. Tech. Conf, Montreal,Canada.
[7] 陳正鍇,2004,等速連軸機構之運動與靜力分析,國立台灣海洋大學機械與輪機工程研究所碩士論文。[8] I. S. Fischer, 2000, “A Geometric Method for Determining Joint Rotations in Spatial Mechanisms,” Proc. ImechE., Part K, Vol.214, pp.209-218,Newark,New Jersey,U.S.A.
[9] Y. W. Liu, and K. L. Ting, 1992, “Rotatability Laws for Spherical N-Bar Kinematic Chains,” Proc. ASME, Mechanical Design and Synthesis, Vol.46, pp.387-393, Scottsdale, AZ, U.S.A.
[10] 白東鑫,2000,球面四連桿同族機構之研究,國立中山大學機械工程研究所碩士論文。[11] J. M. Rico, and J. Gallardo, 2000, “A Simple Method for the Determination of Angular Velocity and Acceleration of a Spherical Motion Through Quaternions,” J. Meccanica, Vol.35, pp.111-118.
[12] 唐聰隆,1995,平面與球面六連桿平台機構之研究-運動分析及工作空間,國立台灣海洋大學機械與輪機工程研究所碩士論文。[13] 薛百誼,1998,三重球面連桿腕關節機構之研究,國立中山大學機械工程研究所碩士論文。[14] A. H. Soni, 1971, “Structural Analysis of Two General Constraint Kinematic Chains and Their Practical Application,” Trans. ASME, J. Eng. Ind., Vol. 93, pp. 231-238.
[15] H. Shen, and K. L. Ting, 2000, “Configuration Analysis of Complex Multiloop Linkages and Manipulators,” Mech. Mach Theory, Vol. 35, No. 3, pp. 353-362.
[16] A. K. Dhingra, and A. N. Almadi, 2000, “Close-Form Displacement Analysis of 8 , 9 and 10-Link Mechanisms Part I : 8-Link 1-DOF Mechanisms,” Mech. Mach Theory, Vol. 35, No. 6, pp. 821-850.
[17] A. K. Dhingra, and A. N. Almadi, 2000, “Close-Form Displacement Analysis of 8 , 9 and 10-Link Mechanisms Part II : 9-Link 2-DOF and 10-Link 3-DOF Mechanisms,” Mech. Mach Theory, Vol. 35, No. 6, pp. 851-869.
[18] C. W. Wampler, 2004, “Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops,” Trans. ASME, J. Mech.. Des., Vol. 126, pp. 93-100.
[19] A. P. Morgan, 1989, “Finding All Isolated Solutions to Polynomial Systems Using Hompack,” ACM Trans. on Mathematical Software, Vol. 15, pp. 93-122.
[20] M. Raghavan, and B. Roth, 1995, “Solving Polynomial Systems for The Kinematic Analysis and Synthesis of Mechanism and Robot Manipulators,” Trans. ASME, J. Mech. Des., Vol. 117, pp. 71-79.
[21] A. K. Dhingra, and A. N. Almadi, 2000, “A Grobner-Sylvester Hybrid Method for Close-Form Displacement Analysis of Mechanisms,” Trans. ASME, J. Mech. Des., Vol. 122, pp. 431-438.
[22] T. M. Wu, 2005, “A Study of Convergence on the Newton - Homotopy Continuation Method,” Journal of Applied Mathematics and Computation, Vol.168, pp.1169-1174.
[23] C. H. Chiang, 1988, Kinematics of Spherical Mechanisms, Cambridge University Press.
[24] L. W. Tsai, 1999, Robot analysis : The mechanics of serial and parallel manipulators, New York, Wiley.
[25] I. S. Fischer, 1999, Dual-Number Method in Kinematics, Statics and Dynamics, CRC Press.
[26] 許正和,2002,機構構造設計學,高立圖書。
[27] PHCpack Website , http://www2.math.uic.edu/~jan