跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 07:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉毓璿
研究生(外文):Yu - Hsuan Liu
論文名稱:研究抽象經濟、廣義向量擬平衡點問題系統及最佳化問題
論文名稱(外文):The Study of Abstract Economies, System of Generalized Vector Quasi-Equilibrium Problems and Optimization Problems
指導教授:林來居 老師
指導教授(外文):Lai-Jiu Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:58
中文關鍵詞:抽象經濟平衡點問題最佳化問題上半連續下半連續
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們首先利用 Himmelberg 的固定點定理去建立了一般抽象經濟在策略集合是緊緻且代理者的人數是不可數的情況下的平衡點存在性定理。利用這些結果,我們建立了最大元素一般存在性定理以及廣義向量擬平衡點問題系統的存在性定理, 然後再由此結果,我們建立了廣義向量擬變分不等式問題系統和似擬變分不等式問題系統以及向量擬最佳化問題系統的存在性定理。
In this paper, we apply Himmelberg''s fixed point theorem to establish existence theorems of equilibria for generalized abstract economies in which strategic spaces may not be compact and the set of players may not be countable. We apply our res-
ults to establish general existence theorems of maximal elements and to establish existence theorems of system of generalized vector quasi-equilibrium problems from which we derive existence theorems of system of generalized vector quasi-variational and quasi-variational-like inequality problems and system of vector quasi-optimization problems.
1. Introduction ……………………………………………………1
2. Preliminaries……………………………………………………8
3. Existence theorems of equilibria for generalized
abstract economies ……………………………………………14
4. Existence results for system of generalized vector
quasi-equilibrium problems ………………………………26
5. Applications to system of generalized vector quasi-
variational-like inequality problems and system of
vector quasi-optimization problems ………………………42
References ………………………………………………………54
[1] G. Debreu, A social equilibrium theorem , Proc. Nat. Acad.
Sci. U.S.A., vol.38 (1952), 386-393.
[2] G. Debreu, Theory of value, Yale University, New Haven, CT, (1959).
[3] D. Gale and A. Mas-Collel, An Equilibrium existence for a general model without ordered preferences, J. Math. Econom. vol.2 (1975), 9-15.
[4] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom., vol. 2 (1975), 345-348.
[5] A. Borglin and H. Keiding, Existence of equilibrium actions of equilibrium: A note on the "new" existence theorems, J. Math. Econom., vol.3 (1976), 313-316.
[6] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., vol.12 (1983), 233-245.
[7] S. Toussaint, On the existence of equilibria in economies with infinitely many commodities and without ordered preferences, J. Econom. Theorey, vol. 33 (1984), 98-115.
[8] C. I. Tulcea, On the approximation of upper semicontinuous correspondences and the equilibriums of generalized games, J. Math. Anal. Appl., vol.136 (1988), 267-289.
[9] S. Y. Chang, On the nash equilibrium, Soochow Journal of Mathematics,vol.16(2) (1990), 241-248.
[10] G. Tian, Equilibrium in abstract economies with a non-compact infinite dimensional strategy space, an infinite number of agents and without ordered preferences, Econom. Lett., vol. 33 (1990), 203-206.
[11] K. K. Tan and X. Z. Yuan, Lower semicontinuity of multivalued mappings and equilibrium points, to appear in the Proceedings of the First World Congress of Nonlinear Analysis, Walter de Gruyter, 1993.
[12] X. P. Ding, W. K. Kim and K. K. Tan, A selection theorem and its applications, Bull. Austral. Math. Soc., vol.46 (1992), 205-212.
[13] X. P. Ding and K. K. Tan., On equillibria of non-compact generalized games, J. Math. Anal. Appl.,vol. 177 (1993), 226-238.
[14] K. K. Tan and X. Z Yuan, Approximation method and equilibria of abstract economies, Proc. Amer. Math. Soc., vol.122 (1994), 503-510.
[15] X. Wu and S. K. Shen, A further generalization of Yannelis-Prabhakar''s continuous seletion and its applications, J. Math. Anal. Appl., vol.197 (1996), 61-74.
[16] W. K. Kim and K. K. Tan, New existence theorems of equilibria and applications, Nonlinear Analysis, vol. 47 (2001), 531-542.
[17] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc., vol.125(6) (1997), 1779-1783.
[18] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., vol.38 (1972), 205-207.
[19] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, vol. 63 (1994), 123-146.
[20] J. Y. Fu, Generalized vector quasi-euilibrium problems, Math. Methods of Operations Research, vol.52 (2000), 57-64.
[21] Q. H. Ansari, W. Oettli and D. Schlager, A generalization of vector equilibria,
Mathematical Methods Operations Research, vol. 46 (1997), 147-152.
22 Q. H. Ansari, Vector equilibrium problems and vector vairational inequalities,
In Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Edited by F. Giannessi, Kluwer Academic Publishers, Dordrecth, The Netherlands (2000), 1-15.
[23] Q. H. Ansari, S. Schaible and J. C. Yao, The system of vector equilibrium problems and its applications, Journal of Optimization Theory and Applications, vol. 107(3) (2000), 547-557.
[24] Q. H. Ansari, S. Schaible and J. C. Yao, The system of generalized vector equilibrium problems with applications, Journal of Global Optimization, vol. 22 (2002),3-16.
[25] S. H. Hou, H. Yu and G. Y. Chen, On vector quasi-equilibrium problems with set-valued maps, J. Optim. Theory and appl., (to appear)
[26] L. J. Lin, Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. Pre-print.
[27] Q. H. Ansari, W. K. Chan and X. Q. Yang, The system of vector quasi-equilibrium problems with applications}, Pre-print.
[28] Q. H. Ansari, A. Idzik, and J.C. Yao, Coincidence and fixed point theorems with applications, Topological Methods in Nonlinear analysis, vol.15(1) (2000), 191-202.
[29] Q. H. Ansari and J.C. Yao, System of generalized variational inequalities and their application. , Applicable Analysis, vol. 76(3-4) (2000), 203-217.
[30] F. Giannessi, Vector variational inequalities and vector equilibria, Mathematical Theories, Kluwer Academic Publications, Dordrecht-Boston-London.
[31] I. V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, Journal of Mathematical Analysis and Applications, vol. 206 (1997), 42-58.
[32] Q. H. Ansari, On generalized vector variational-like inequalities, Ann. Sci. Math. Quebec, vol. 19 (1995), 131-137.
[33] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequlities in locally convex Hausdorff topological vector spaces}, India J. Pure Appl. Math., vol.28 (1997), 33-41.
[34] K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl., vol. 92 (1997), 117-125.
[35] C. Berge, Topological Spaces, including a treatment of multivalued functions, vector spaces and convexity, (Translated by E. M. Patterson), Oliver and Boyd Ltd, 1963.
[36] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, vol.122 (1985), 231-245.
[37] S. Kakutani, A generalization of Brouwer''s fixed point theorem, Duke Math. J., vol.8 (1941), 457-459.
[38] E. Michael, Continuous selections I, Ann. of Math., vol. 63}(2) (1956), 361-382.
[39] E. Michael, A theorem on semicontinuous set-valued functions, Duke Math. J., vol.26 (1959), 647-651.
[40] D. I. Rim and W. K. Kim, A fixed point theorem and existence of equilibrium for abstract economies, Bull. Austral. Math. Soc., vol.45 (1992), 385-394.
[41] G. Mehta, K. T. Tan and X. Z. Yuan, Fixed points, Maximal elements and equilibria of generalized games, Nonlinear Analysis , Theory, Methods and Applications, vol.28 (1997), 689-699.
[42] S. S. Chang, B. S. Lee, X. Wu, Y. J. Chao and G. M. Lee, On the generalized quasi-variational inequality problems, J. Math. Anal. Appl., vol. 203 (1996), 686-711.
[43] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[44] L. J. Lin and Z. T. Yu, On some equilibrium problems for multimaps, Joural of Computational and Applied Mathematics, vol.129 (2001), 171-183.
[45] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., vol.38 (1952), 121-126.
[46] Q. H. Ansari, J. C. Yao, An existence result for the generalized vector equilibrium problems, Applied Mathematics Letters, vol. 12 (1999), 53-56.
[47]H. H. Schaefer, Topological vector spaces, Springer (1971), New York.
[48] X. P. Ding and E. Tarafdar, Generalized vector variational-like inequalities
without monotonicity, In Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, (2000), 113-124, Kluwer Academic Publishers, Dordrecht-Boston-London.
[49] F. H. Clarke, Optimization and nonsmooth analysis, SIAM (1990), Philadelphia.
[50] R. T. Rockafellar, Convex analysis, Princeton University Press (1970), Princeton, NJ.
[51] B. D. Craven, Nondifferentiable optimization by smooth approximation, Optimization, vol.17 (1986), 3-17.
[52] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, vol.80 (1982), 545-550.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top