| 
[1] G. Debreu, A social equilibrium theorem , Proc. Nat. Acad. Sci. U.S.A., vol.38 (1952), 386-393. [2] G. Debreu, Theory of value, Yale University, New Haven, CT, (1959). [3] D. Gale and A. Mas-Collel, An Equilibrium existence for a general model without ordered preferences, J. Math. Econom. vol.2 (1975), 9-15. [4] W. Shafer and H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, J. Math. Econom., vol. 2 (1975), 345-348. [5] A. Borglin and H. Keiding, Existence of equilibrium actions of equilibrium: A note on the "new" existence theorems, J. Math. Econom., vol.3 (1976), 313-316. [6] N. C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., vol.12 (1983), 233-245. [7] S. Toussaint, On the existence of equilibria in economies with infinitely many commodities and without ordered preferences, J. Econom. Theorey, vol. 33 (1984), 98-115. [8] C. I. Tulcea, On the approximation of upper semicontinuous correspondences and the equilibriums of generalized games, J. Math. Anal. Appl., vol.136 (1988), 267-289. [9] S. Y. Chang, On the nash equilibrium, Soochow Journal of Mathematics,vol.16(2) (1990), 241-248. [10] G. Tian, Equilibrium in abstract economies with a non-compact infinite dimensional strategy space, an infinite number of agents and without ordered preferences, Econom. Lett., vol. 33 (1990), 203-206. [11] K. K. Tan and X. Z. Yuan, Lower semicontinuity of multivalued mappings and equilibrium points, to appear in the Proceedings of the First World Congress of Nonlinear Analysis, Walter de Gruyter, 1993. [12] X. P. Ding, W. K. Kim and K. K. Tan, A selection theorem and its applications, Bull. Austral. Math. Soc., vol.46 (1992), 205-212. [13] X. P. Ding and K. K. Tan., On equillibria of non-compact generalized games, J. Math. Anal. Appl.,vol. 177 (1993), 226-238. [14] K. K. Tan and X. Z Yuan, Approximation method and equilibria of abstract economies, Proc. Amer. Math. Soc., vol.122 (1994), 503-510. [15] X. Wu and S. K. Shen, A further generalization of Yannelis-Prabhakar''s continuous seletion and its applications, J. Math. Anal. Appl., vol.197 (1996), 61-74. [16] W. K. Kim and K. K. Tan, New existence theorems of equilibria and applications, Nonlinear Analysis, vol. 47 (2001), 531-542. [17] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc., vol.125(6) (1997), 1779-1783. [18] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., vol.38 (1972), 205-207. [19] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, vol. 63 (1994), 123-146. [20] J. Y. Fu, Generalized vector quasi-euilibrium problems, Math. Methods of Operations Research, vol.52 (2000), 57-64. [21] Q. H. Ansari, W. Oettli and D. Schlager, A generalization of vector equilibria, Mathematical Methods Operations Research, vol. 46 (1997), 147-152. 22 Q. H. Ansari, Vector equilibrium problems and vector vairational inequalities, In Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Edited by F. Giannessi, Kluwer Academic Publishers, Dordrecth, The Netherlands (2000), 1-15. [23] Q. H. Ansari, S. Schaible and J. C. Yao, The system of vector equilibrium problems and its applications, Journal of Optimization Theory and Applications, vol.  107(3) (2000), 547-557. [24] Q. H. Ansari, S. Schaible and J. C. Yao, The system of generalized vector equilibrium problems with applications, Journal of Global Optimization, vol. 22 (2002),3-16. [25] S. H. Hou, H. Yu and G. Y. Chen, On vector quasi-equilibrium problems with set-valued maps, J. Optim. Theory and appl., (to appear) [26] L. J. Lin, Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. Pre-print. [27] Q. H. Ansari, W. K. Chan and X. Q. Yang, The system of vector quasi-equilibrium problems with applications}, Pre-print. [28] Q. H. Ansari, A. Idzik, and J.C. Yao, Coincidence and fixed point theorems with applications, Topological Methods in Nonlinear analysis, vol.15(1) (2000), 191-202. [29] Q. H. Ansari and J.C. Yao, System of generalized variational inequalities and their application. , Applicable Analysis, vol. 76(3-4) (2000), 203-217. [30] F. Giannessi, Vector variational inequalities and vector equilibria, Mathematical Theories, Kluwer Academic Publications, Dordrecht-Boston-London. [31] I. V. Konnov and J. C. Yao, On the generalized vector variational inequality problem, Journal of Mathematical Analysis and Applications, vol. 206 (1997), 42-58. [32] Q. H. Ansari, On generalized vector variational-like inequalities, Ann. Sci. Math. Quebec, vol. 19 (1995), 131-137. [33] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequlities in locally convex Hausdorff topological vector spaces}, India J. Pure Appl. Math., vol.28 (1997), 33-41. [34] K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Theory Appl., vol. 92 (1997), 117-125. [35] C. Berge, Topological Spaces, including a treatment of multivalued functions, vector spaces and convexity, (Translated by E. M. Patterson), Oliver and Boyd Ltd, 1963. [36] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, vol.122 (1985), 231-245. [37] S. Kakutani, A generalization of Brouwer''s fixed point theorem, Duke Math. J., vol.8 (1941), 457-459. [38] E. Michael, Continuous selections I, Ann. of  Math., vol. 63}(2) (1956), 361-382. [39] E. Michael, A theorem on semicontinuous set-valued functions, Duke Math. J., vol.26 (1959), 647-651. [40] D. I. Rim and W. K. Kim, A fixed point theorem and existence of equilibrium for abstract economies, Bull. Austral. Math. Soc., vol.45 (1992), 385-394. [41] G. Mehta, K. T. Tan and X. Z. Yuan, Fixed points, Maximal elements and equilibria of generalized games, Nonlinear Analysis , Theory, Methods and Applications, vol.28 (1997), 689-699. [42] S. S. Chang, B. S. Lee, X. Wu, Y. J. Chao and G. M. Lee, On the generalized quasi-variational inequality problems, J. Math. Anal. Appl., vol. 203 (1996), 686-711. [43] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. [44] L. J. Lin and Z. T. Yu, On some equilibrium problems for multimaps, Joural of Computational and Applied Mathematics, vol.129 (2001), 171-183. [45] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., vol.38 (1952), 121-126. [46] Q. H. Ansari, J. C. Yao, An existence result for the generalized vector equilibrium problems, Applied Mathematics Letters, vol. 12 (1999), 53-56. [47]H. H. Schaefer, Topological vector spaces, Springer (1971), New York. [48] X. P. Ding and E. Tarafdar, Generalized vector variational-like inequalities without monotonicity, In Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, (2000), 113-124, Kluwer Academic Publishers, Dordrecht-Boston-London. [49] F. H. Clarke, Optimization and nonsmooth analysis, SIAM (1990), Philadelphia. [50] R. T. Rockafellar, Convex analysis, Princeton University Press (1970), Princeton, NJ. [51] B. D. Craven, Nondifferentiable optimization by smooth approximation, Optimization, vol.17 (1986), 3-17. [52] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, vol.80 (1982), 545-550.
   |