跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳蕙君
研究生(外文):Hui-Chun Wu
論文名稱:以樹狀模型評價保證最低提領給付保險附約
論文名稱(外文):Pricing Guaranteed Minimum Withdrawal Benefits by Trees
指導教授:呂育道呂育道引用關係楊曉文楊曉文引用關係
指導教授(外文):Yuh-Dauh LyuuSheau-Wen Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:22
中文關鍵詞:保證最低提領給付BTT模型障礙選擇權
外文關鍵詞:guaranteed minimum withdrawal benefitsbino-trinomial treebarrier options
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
保證最低提領給付保險附約(guaranteed minimum withdrawal benefits; GMWB)為變額年金保險(variable annuities; VA)之新型態附約,因其提供最低給付保證,兼具投資功能與報酬保障,為近年來新興之投資型保險商品。文獻上評價GMWB之方法大體上可歸類為蒙地卡羅模擬法和以數值方法求解PDE方程式兩種,本文將運用樹狀結構法更直觀且更貼近實務的對GMWB進行評價。我們以Milevsky與Salisbury (2006)的靜態模型為基礎,提出GMWB可拆解為一離散型單一向下失效障礙選擇權(discrete down-and-out single barrier option)加上一定期確定年金(generic term-certain annuity),沿用Dai與Lyuu (2004)和Dai (2009)設計的階梯樹狀模型(stair tree)股價會因配發現金股利而呈階梯狀下降之想法,運用Dai與Lyuu (2008)提出的bino-trinomial tree (BTT)評價GMWB內含選擇權。我們發現運用此法計算出的公平費用率與蒙地卡羅模擬法的數值結果完全相同,且運算速度更快。
Guaranteed minimum withdrawal benefits (GMWB) is an innovative rider of variable annuity (VA) policies. In recent years GMWB has gained popularity due to it being an investment-linked insurance while guaranteeing minimum return. The pricing method of GMWB can be generally classified in two ways: Monte Carlo simulation and numerical PDE techniques. In this research, the tree model is used to price GMWB rider in a more realistic and intuitive fashion than existing methods. We extend the static model in Milevsky and Salisbury (2006), showing that the product can be decomposed into a discrete down-and-out single barrier option plus a generic term-certain annuity. We follow the idea of stair tree in Dai and Lyuu (2004) and Dai (2009), using bino-trinomial tree (BTT) in Dai and Lyuu (2008) to price the GMWB’s embedded exotic option. Numerical experiments show this method to be more accurate and efficient.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究流程與論文架構 2
第二章 文獻探討 3
第一節 GMWB評價模型 3
第二節 股利模型 3
第三節 障礙選擇權 5
第三章 研究方法 7
第一節 帳戶動態假設 7
第二節 樹狀結構 8
第四章 數值結果 18
第一節 評價GMWB價值 18
第二節 求解公平費用率 19
第五章 結論 20
參考文獻 21
[1]BLACK, F. “Fact and Fantasy in the Use of Options.” Financial Analysts Journal, 31 (1975), pp. 36–41, 61–72.
[2]BOYLE, P., AND LAU, S. “Bumping against the Barrier with the Binomial Method.” Journal of Derivatives, 1 (1994), pp. 6–14.
[3]DAI, T.-S. “Efficient Option Pricing on Stocks Paying Discrete or Path-Dependent Dividends with the Stair Tree.” Quantitative Finance, forthcoming in 2009.
[4]DAI, T.-S., AND LYUU, Y.-D. “Pricing Discrete Dividend-Paying Stock Options with the Stair Tree.” Taiwan Banking & Finance Quarterly, 5, No. 4 (December 2004), pp. 1-17.
[5]DAI, T.-S., AND LYUU, Y.-D. “The Bino-trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing.” In Proceedings of FMA European Conference, Prague, Czech Republic, June 4–6, 2008.
[6]FIGLEWSKI, S., AND GAO, B. “The Adaptive Mesh Model: A New Approach to Efficient Option Pricing.” Journal of Financial Economics, 53 (1999), pp. 313–351.
[7]FRISHLING, V. “A Discrete Question.” Risk, 15 (2002), pp. 115–116.
[8]LYUU, Y,-D. “Very Fast Algorithms for Barrier Option Pricing and the Ballot Problem.” Journal of Derivatives, 5 (1998), pp. 68–79.
[9]LYUU, Y.–D. Financial Engineering & Computation: Principles, Mathematics, Algorithms. Cambridge: Cambridge University Press, 2002.
[10]MILEVSKY, M.A., AND SALISBURY, T.S. “Financial Valuation of Guaranteed Minimum Withdrawal Benefits.” Insurance: Mathematics and Economics, 38 (2006), 21–38.
[11]MUSIELA, M., AND RUTKOWSKI, M. Martingale Methods in Financial Modelling. Berlin: Springer-Verlag, 1997.
[12]RITCHKEN, P. “On Pricing Barrier Options.” Journal of Derivatives, 3 (1995), pp. 19–28.
[13]ROLL, R. “An Analytic Valuation Formula for Unprotected American Call Options on Stock with Known Dividends.” Journal of Financial Economics, 5 (1977), pp. 251–258.
[14]劉議謙,附保證提領保險商品之評價,東吳大學商用數學系碩士論文,中華民國97年7月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top