跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧德任
研究生(外文):De-Ren Lu
論文名稱:毫米波低相位變異可變増益放大器與低雜訊放大器之研製
論文名稱(外文):Research on Millimeter-Wave Low-phase-variation Variable-gain Amplifier and Low-noise Amplifier
指導教授:林坤佑林坤佑引用關係
指導教授(外文):Kun-You Lin
口試委員:蔡政翰張鴻埜蔡作敏吳佩熹
口試日期:2012-01-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:154
中文關鍵詞:低雜訊放大器可變增益放大器V頻段60-GHzW頻段電流控制架構相位陣列系統
外文關鍵詞:LNAVGACMOSV-band60-GHzW-bandcurrent-steeringphased-array system
相關次數:
  • 被引用被引用:3
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著通訊技術和晶片研製技術的演進,毫米波頻帶快速的發展。這是由於毫米波頻帶在無線傳輸應用上擁有較大的頻寬且高速傳輸。在本論文中,兩種不同用途的放大器,分別為低雜訊放大器以及可變增益放大器,兩者均利用金氧半場效電晶體(CMOS)製程實現,前者應用於W頻段,而後者應用於V頻段。
第一部分設計並實現W頻段的低雜訊放大器且此放大器是使用65 nm CMOS製程製作。在接收端中低雜訊放大器為一個重要的元件。此電路採用四級疊接的架構達到高增益和寬頻的效果。此低雜訊放大器在117.5 GHz有25.3 dB的最高增益和在75.5-120.5 GHz頻帶中,此放大器有大於20 dB。此電路在87-100 GHz範圍內有6-8.3 dB的量測雜訊指數,-3 dBm的1-dB壓縮點的輸出功率(OP1dB),以及0.5 dBm的飽和輸出功率。此低雜訊放大器在2-V的電源供應下靜態電流為24 mA。
第二部分設計並實現60 GHz頻段的可變增益放大器,此電路可以用於接收器前端的相位陣列系統。此放大器是使用65 nm CMOS的製程製作,採用兩級的電流控制架構(current steering)達到控制增益的效果。共振技巧除了可用來消除寄生電容外,還可以在可變增益放大器在增益變化時,降低相位變化。除此之外,這個方法同時可以降低可變增益放大器的雜訊指數。此電路在54-62 GHz的1-dB頻寬下,有18 dB的最高增益。另外,此電路有4.4 dB的最低雜訊指數。當增益從15.5 dB至0.5 dB變化時,輸出信號的相位變化在6.2°以內。在1.8-V的電源供應下,全部的DC功耗為18 mW。低相位變異的可變增益放大器用於相位陣列系統時,可降低操作的複雜度;若應用於向量疊加調變器則可增加調變信號的品質。

As the progress of communication techniques and the advance in process technology, the interest in the millimeter-wave band has rapidly grown since the wide bandwidth allows high data transferring rate for short-range wireless applications. In this thesis, a low noise amplifier (LNA) and a variable-gain amplifier (VGA) are implemented in CMOS technology for W-band and V-band, respectively.
In the first part, the W-band LNA, which is an essential component in the receiver, has been designed by TSMC 65-nm 1P9M CMOS process. The circuit is implemented by 4-stage cascode configuration to achieve high gain and wideband performance. This LNA has a peak gain of 25.3 dB at 117.5 GHz, and the gain is better than 20 dB from 75.5 GHz to 120.5 GHz. It features the measured noise figure is from 6 to 8.3 dB from 87 to 100 GHz, OP1dB of -3 dBm, and Psat of 0.5 dBm. The quiescent current of the LNA is 24 mA from 2-V supply voltage.
In the second part, the V-band VGA can be applied in the receiver of a phased-array system. The circuit has been implemented by TSMC 65-nm 1P9M CMOS process and adopted two current-steering stages to achieve variable-gain function. Resonant technique is proposed to cancel the intrinsic capacitor and reduce insertion phase variation while the gain of the VGA is varied. In addition, the noise figure of the VGA can be reduced by using this method simultaneously. A peak gain of 18 dB with a 1-dB bandwidth of 54-62 GHz is measured. In addition, the circuit has a minimum measured NF of 4.4 dB. The insertion phase variation is lower than 6.2° while the gain is varied from 15 dB to 0 dB. The total dc power consumption is 18 mW from 1.8-V supply voltage. A low-phase-variation VGA can not only reduce the complexity of control systems in the phased-array system but also enhance the quality of modulated signals in vector sum modulators.


口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.2.1 W-band Low Noise Amplifier 2
1.2.2 V-band Variable Gain Amplifier 3
1.3 Contributions 6
1.4 Thesis Organization 6
Chapter 2 Fundamentals of Amplifier 8
2.1 Linear Amplifier Theory 8
2.2 The Basic of LNA 11
Chapter 3 A Wideband W-band Low-Noise Amplifier in 65-nm CMOS 15
3.1 Introduction 15
3.2 Previously Published Works 16
3.3 Design Wideband W-band LNA in 65-nm CMOS 19
3.3.1 Device Selection 20
3.3.2 Matching 27
3.3.3 Simulation Results 35
3.4 Measurement Results 40
3.5 Debug 43
3.6 Redesigned LNA 48
3.7 Simulation Results of the Redesigned LNA 50
3.8 Measurement Results of Redesigned LNA 53
3.9 Summary 59
Chapter 4 A V-band Low Phase Variation Variable Gain Amplifier in 65-nm CMOS 60
4.1 Introduction 60
4.2 Previously Published Works 61
4.3 Design Theory 65
4.3.1 Current-Steering Technique 66
4.3.2 Phase Analysis for Current-Steering Topology with the Proposed Phase Compensation Method 68
4.4 Design of the Proposed V-band Low-Phase Variation Variable-Gain Amplifier 91
4.4.1 Device Selection 91
4.4.2 Estimating the Length of Parallel Short Stub 97
4.4.3 The influence of Parallel Short Stub 99
4.4.4 Matching 104
4.4.5 Determined the Length of Parallel Short Stub for Phase Compensation 111
4.4.6 Simulation Results 114
4.5 Measurement Results 120
4.6 Discussion and Summary 145
Chapter 5 Conclusions 148
REFERENCE 150



[1]IEEE P802.15-05-0596-01-003c.pdf.
[2]D. M. Kang, J. Y. Hong, H. Y. Shim, H. S. Yoon, and K. H. Lee, “A W-band MMIC one-chip set for automotive radar sensor by using a 0.l5 μm mHEMT process,” 2006 European Microwave Integrated Circuits Conference, pp. 328-331, Sep. 2006.
[3]M. Hartmann, C. Wagner, K. Seemann, J. Platz, H. Jager, and R. Weigel, ‘A low-power low-noise single-chip receiver front-end for automotive radar at 77 GHz in Silicon-Germanium bipolar technology,” 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 149-152, Jun. 2007.
[4]D. T. Bryant. R. A. Eye, J. M. Carroll, and D. Allen, ‘Integrated LNA-sub-harmonic mixer for 77 GHz automotive radar applications using GaAs pHEMT technology,” 2004 IEEE Compound Semiconductor Integrated Circuits Symp., pp. 257-259, Oct. 2004.
[5]R. Appleby, R. N. Anderton, N. H. Thomson, J. W. Jack, “The design of a real-time 94 GHz passive millimeter wave imager for helicopter operations,” Proc. SPIE, vol. 5619, pp. 38-46, Dec. 2004.
[6]A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydi, “Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 12, PP. 2995-3001, Dec. 2002.
[7]K. V. Caekenberghe, K. F. Brakora, and K. Srabandi, “A 94 GHz OFDM frequency scanning radar for autonomous landing guidance,” 2007 IEEE Radar Conference, pp. 248-253, Apr. 2007.
[8]R. LaBelle, R. Girard, and G. Arbery, “A 94 GHz RF electronics subsystem for the cloudSat cloud profiling radar,” 2003 European Microwave Integrated Circuits Conference, pp. 1139-1142, Oct. 2003.
[9]R. Appleby and R. N. Anderton, “Millimeter-wave and submillimeter-wave imaging for security and surveillance,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1683-1690, Aug. 2007.
[10]R. Appleby, R. Anderton, N. Thomson, J. Jack, “Ultra-broadband IF/LO system of NTU W-band interferometer array,” Proc. SPIE, vol. 7741, 2010, 774116.
[11]S.-K. Wong, H.-H. Li, Y. Shao, J. Shiao, H.-F. Teng, Y.-L. Chen and T. Chiueh, “Real-Time Tbps Digital Correlator in NTU-Array,” Proc. SPIE, vol. 7741, 2010, TT412T.
[12]P. Raffin, P. Koch, Y.-D. Huang, C.-H. Chang, J. Chang, M.-T. Chen, K.-Y. Chen, P.T.P. Ho, C.-W. Huang, F. Ibanez-Roman, H. Jiang, M. Kesteven, K.-Y. Lin, G.-C. Liu, H. Nishioka, and K. Umetsu, “Progress of the Array of Microwave Background Anisotropy (AMiBA),” Proc. of SPIE vol. 6273, 2006, 62731l.
[13]Taiwan Semiconductor Manufacturing Co, Ltd., “TSMC 65 nm CMOS mixed signal RF low power 1P9M salicide CU_LOWK 1.2&3.3V spice model,” 2008.
[14]http://www.agilent.com
[15]“Sonnet User’s Manual, Release 11,” Sonnet Software, Inc., March 2007, Syracuse, NY.
[16]D. Nayak, L.-T. Hwang, and I. Turlik, “Simulation and design of lossy transmission lines in a thin-film multichip package,” IEEE Trans. on Compoments, Packaging, and Manufacturing Technology, vol. 13, pp. 294-302, issue 2, June 1990.
[17]Y.-S. Jiang, Z.-M. Tsai, J.-H. Tsai, H.-T. Chen, and H. Wang, “A 86 to 108 GHz amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 124–126, Feb. 2008.
[18]B. Heydari, M. Bohsali, E. Adabi, and A. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 200–597.
[19]江昱嫺,毫米波放大器及帶通濾波切換器之硏究,國立臺灣大學電信工程學硏究所碩士論文,2008年。
[20]Ning Zhang, Chih-Ming Hung, Kenneth, K. O., “80-GHz Tuned Amplifier in Bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 121-123, Feb. 2008.
[21]D. Sandstrom, M. Varonen, M. Karkkainen, K. Halonen, “W-band CMOS amplifiers achieving +10dBm saturated output power and 7.5dB NF,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 486 - 487.
[22]L. Zhou, C.-C. Wang, Z. Chen, P. Heydari, “A W-band CMOS receiver chipset for millimeter-Wave radiometer systems,” IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 378–391, Feb. 2011.
[23]M. Khanpour, K. W. Tang, P. Garcia, and S. P. Voinigescu, “A wideband W-band receiver front-end in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1717–1730, Aug. 2008.
[24]A. Tomkins, P. Garcia, S. P. Voinigescu, “A Passive W-Band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 1981–1991, Feb. 2010.
[25]D. Lovelace, J. Costa, and N. Camilleri, “Extracting small-signal model parameters of silicon MOSFET transistors,” in IEEE MTT-S Int. Microw. Symp. Dig., 1994, pp. 865-868.
[26]Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001, Chapter 2.
[27]Z.-M. Tsai, J.-C. Kao, K.-Y. Lin, H. Wang, “A compact low DC consumption 24-GHz cascode HEMT VGA,” in Proc. Asia–Pacific Microw. Conf., Dec. 2009.
[28]C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai and H. Wang, “A 71-76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE RFIC Symp. Dig., Jun. 2008, pp. 609-612.
[29]S. Hauptmann, F. Ellinger, F. Korndoerfer, C. Scheytt, “V-band variable gain amplifier applying efficient design methodology with scalable transmission lines,” IET Circuits Devices & Systems, vol. 4, pp. 24-29, Jan. 2010.
[30]A. Natarajan, S. Nicolson, M.-D. Tsai and B. Floyd, “A 60 GHz variable-gain LNA in 65nm CMOS,” in ASSCC Symp. Dig., Nov. 2008, pp. 117-120.
[31]D.-W. Kang, J.-G. Kim, B.-W. Min, and G. M. Rebeiz, “Single and four-element Ka-band transmit/receive phased-array silicon RFICs with 5-bit amplitude and phase control,” IEEE Trans. Microw. Theory Tech., vol. 57, no 12, pp. 3534-3543, Dec. 2009.
[32]B.-W. Min and G. M. Rebeiz, “Ka-band SiGe HBT low phase imbalance differential 3-bit variable gain LNA,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 272-274, Apr. 2008.
[33]F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microw. Theory Tech., vol. 57, no 8, pp. 1885-1894, Aug. 2010.
[34]U. Mayer, F. Ellinger, and R. Eickhoff, “Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-Band,” IET Circuits, Devices & Systems, vol. 4, pp. 433-439, 2010.
[35]Y.-K. Hsieh, J.-L. Kuo, H. Wang, and L.-H. Lu, “A 60 GHz broadband low-noise amplifier with variable-gain control in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 610–612, Nov. 2011.
[36]謝家瑜,60-GHz 緩衝放大器與低相位變異可變增益放大器之研製,國立臺灣大學電信工程學硏究所碩士論文,2010年。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊