[1]沈哲州,”醫用超音波影像上課講義”,國立台灣科技大學電機所,民國98年。
[2]李維寧,”高效能斑點追蹤技術及其在乳房超音波影像之應用”,國立台灣大學,碩士論文,民國92年。[3]陳韋廷,”基於明亮差異值之超音波影像斑點雜訊抑制”,國立台灣科技大學,碩士論文,民國97年。[4]G. E. Trahey, S. W. Simith, and O. T. von Ramm, “Speckle pattern correlation with lateral aperture translation: Experimental results and implications for spatial compounding,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr., vol. Uffc-33, no. 3, pp. 257-264, May 1986.
[5]G. E. Trahey, J. W. Allison, S. W. Simith, and O. T. von Ramm, “A quantitative approach to speckle reduction via frequency compounding,” Ultrason. Imag., vol. 8, no. 3, pp. 151-164, 1986.
[6]T. Loupas, W. N. McDicken, and P. L. Allan, “An adaptive weighted median filter for speckle suppression in medical ultrasonic images,” IEEE Trans. Circuits Syst., vol. 36, no. 1, pp. 129-135, Jan. 1989.
[7]E. J. Chen, W. K. Jenkins and W. D. O’Brien, “Performance of ultrasonic speckle tracking in various tissue,” J. Acoust. Soc. Am., vol. 98, pp. 1273-1278, 1995.
[8]L. N. Bohs, B. J. Geiman, M. E. Anderson, S. C. Gebhart and G. E. Trahey, “Speckle tracking for multi-dimensional flow estimation,” Ultrasonics, vol. 38, pp. 369- 375, 2000.
[9]周敬涵,”都卜勒頻寬橫向血流估計之分析與改進”,國立台灣科技大學,碩士論文,民國96年。[10]B. Dunmire, K. W. Beach, K. Labs, M. Plett, and D. E. Strandness, “Cross-beam vector Doppler ultrasound for angle-independent velocity measurements,” Ultrasound Med. Biol., vol. 26, pp. 1213-1235, Oct. 2000.
[11]S. L. Wang, M. L. Li, P. C. Li, “Estimating the blood velocity vector using aperture domain data,” IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 54, no. 1, pp. 70-78, 2007.
[12]G. E. Trahey, J. W. Allison, and O. T. von Ramm, “Angle independent ultrasonic detection of blood flow,” IEEE Trans. Biomed. Eng., vol. 34, pp. 965-967, 1987.
[13]吳詩盈,”斑點追蹤在高速超音波成像之效能探討”,國立台灣大學,碩士論文,民國98年。
[14]T. G. Bjastad, “High frame rate ultrasound using parallel beamforming ,” Ph.D dissertation, Norwegian University of Science and Technology, 2009.
[15]M. H. Perdersen, K. L. Gammelmark, and J. A. Jensen, “In-vivo evaluation of convex Array synthetic aperture imaging,” Ultrasound in Med. & Biol., vol. 33 no. 1, pp. 37-47, 2007.
[16]R. Y. Chiao, L. J. Thomas, and S. D. Silverstein, “Sparse array imaging with spatially-encoded transmits,” in Proc. IEEE Ultrason. Symp., pp. 1679-1682, 1997.
[17]M. Karaman, P. C. Li, and M. O’Donnell, “Synthetic apertureimaging for small scale systems,” IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 42, pp. 429-442, 1995.
[18]J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen, and M. B. Nielsen, “High frame-rate blood vector velocity imaging using plane wave: simulation and preliminary experiments,” IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 55, no. 8, pp. 1729- 1743, 2008.
[19]G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane wave compounding for very high frame rate ultrasonography and transient elastography ,” IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 56, no. 3, pp. 489-506, 2009.
[20]S. I. Nikolov, K. Gammelmark, and J. A. Jensen, “Recursive ultrasound imaging,” in Proc. IEEE Ultrason. Symp., pp. 1621–1625, 1999.
[21]L. N. Bohs and G. E. Trahey, “A novel method for angle independent ultrasonic imaging of blood flow and tissue motion,” IEEE Trans. Biomed. Eng., vol. 38, pp. 280-286, 1991.
[22]J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med. Biol. Eng. Comp., vol. 4, Suppl. 1, pt. 1, pp. 351-353, 1996b.
[23]J. S. Jeong, J. S. Hwang, M.H. Bae, T. K. Song, “Effects and limitations of motion compensation in synthetic aperture techniques,” IEEE Ultrason. Symp., pp. 1759–1762, 2000.
[24]P. C. Li, M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason., Ferroelect.,Freq. Contr., vol. 50, no. 2 pp. 128-141, 2003.