跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李欣怡
研究生(外文):Hsin-I Lee
論文名稱:常態變方成分模型下良質率之研究
論文名稱(外文):Conformance Proportions in a Normal Variance Components Model
指導教授:廖振鐸廖振鐸引用關係
口試委員:高振宏蔡風順彭雲明林彩玉劉力瑜
口試日期:2012-07-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:81
中文關鍵詞:容許區間廣義樞紐量修正大樣本法有母數拔靴法
外文關鍵詞:Tolerance intervalGeneralized pivotal quantityModified large sampleParametric bootstrap method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
良質率定義為一個感興趣的特性值(characteristic) 落於預先指定的可接受範圍(acceptance region) 內之比例。良質率不僅可應用於製造業的製程評估,而且在農業管理及環境監測等領域上,亦可用來幫助評估感興趣的特徵表現。例如一個適當的乾物質含量(dry matter content) 範圍有助於決定飼料用玉米的最佳收穫時機;水果的甜度(sweetness) 要求必須高於某個規格;亦或在農藥殘留檢測中要求毒素的濃度必須低於某個上限值等等,都是想要估計一個隨機變量(random variable) 超過某個給定界線(specification limit) 或是落於某個給定範圍(specification region) 的比例,本質上即是在估計良質率。
本論文建議在實際應用上,以良質率的區間估計作為容許區間(tolerance interval) 的替代方法。首先,我們討論良質率的區間估計與容許區間之間的關係與異同。接下來,對於雙邊良質率(bilateral conformance proportion),我們建構了兩種信賴區間估計方法,一個是以廣義樞軸量(generalized pivotal quantity) 為
基礎,另一個是利用修正大樣本法(modified large sample method) 的概念。我們同樣提出兩種方法來建構單邊良質率(unilateral conformance proportion) 的信賴區間,第一種也是利用廣義樞軸量,第二種則是建構在學生氏t 分佈(Student’s t
distribution) 上。一個以拔靴法(bootstrap method) 為基礎的校正(calibration) 概念被應用到單邊及雙邊良質率的區間估計上,使其經驗覆蓋率(empirical coverage probability) 更接近給定的數值。同時,我們也考慮不均衡數據(unbalanced data)的估計。此外,我們藉由一些例子來說明本論文所提出的良質率區間估計方法及
其應用,並且透過統計模擬研究來評估這些方法的成效。結果顯示,在實際應用上,本論文所提出之良質率區間估計為可建議使用之方法。

Conformance proportion is defined as the proportion of a performance characteristic of interest that falls within a prespecified acceptance region. It can be used not only in manufacture industry but also in agricultural management or environmental monitoring. For instance, determining best harvest timing for forage maize under an appropriate range of dry matter content, monitoring the sweetness of fruits to
be above a lower limit, or requiring the concentration of a toxin to be below an upper limit in pesticide residue tests. It is of desire to estimate the probability that
a random variable exceeds a specification limit or falls into a specification region, which is essentially the conformance proportion.
In this dissertation, we propose the approach of a conformance proportion as an alternative to that of a tolerance interval for practical use. First, we discuss
the connections between the two approaches. Then, two methods are developed for computing confidence limits for bilateral conformance proportions, one is based on the concept of a generalized pivotal quantity and the other is based on the modified large sample method. For unilateral conformance proportions, we also propose two methods for interval estimation, the first one is also based on the concept of a generalized pivotal quantity and the second one is based on the Student’s t distribution. A bootstrap calibration approach is adapted for both bilateral and unilateral conformance proportions to have empirical coverage probability sufficiently close to the nominal level. Furthermore, we consider the situations with unbalanced data scenarios. Some examples are given to illustrate the proposed methods. The performances of these approaches are evaluated by detailed statistical simulation studies, showing that they can be recommended for practical use.

1 Introduction 1
1.1 Connections with statistical tolerance intervals . . 2
1.1.1 Statistical tolerance intervals . . . . . . . . . . 3
1.1.2 Confidence limits for conformance proportions . . . 4
1.1.3 Connections . . . . . . . . . . . . . . . . . . . . 4
1.2 Literature review and framework . . . . . . . . . . . 5
1.3 Organization of the dissertation . . . . . . . . . . 7
2 Approaches for the bilateral conformance proportion 8
2.1 The GPQ-based method for . . . . . . . . . . . . . 9
2.2 The MLS-based method for . . . . . . . . . . . . . 11
2.3 Illustrative examples . . . . . . . . . . . . . . . 14
2.4 Simulation studies . . . . . . . . . . . . . . . . . 20
2.5 Bootstrap-based calibration . . . . . . . . . . . . 29
3 Approaches for unilateral conformance proportions 33
3.1 The GPQ-based method for pi_L and pi_U. . . . . . . 34
3.2 The t-based method for pi_L and pi_U. . . . . . . . 34
3.2.1 au_2 is known . . . . . . . . . . . . . . . . . . 34
3.2.2 au_2 is unknown . . . . . . . . . . . . . . . . . 35
3.3 Simulation study . . . . . . . . . . .. . . . . . . . 36
3.4 Adjusted t-based method . . . . . . . . . . . . . . . 40
3.5 Illustrative examples . . . . . . . . . . . . . . . . 43
4 Unbalanced data scenarios 48
4.1 Estimation methods . . . . . . . . . . . . . . . . . 48
4.1.1 The MLS-based method for pi. . . . . . . . . . . . 49
4.1.2 The GPQ-based method for pi_L and pi_U. . . . . . 50
4.1.3 The t-based method for pi_L and pi_U. . . . . . . 50
4.2 Simulation studies . . . . . . . . . . . . . . . . .. 51
4.2.1 Bilateral conformance proportion. . . . . . . . . . 52
4.2.2 Unilateral conformance proportion . . . . . . . . . 57
4.3 Illustrative examples . . . . . . . . . . . . . . . . 65
4.4 Discussion. . . . . . . . . . . . . . . . . . . . . . 70
5 Conclusions and future research 74
Bibliography 77

[1] Burdick, R. K. and Graybill, F. A. (1992). Confidence intervals on variance components. NY: Marcel-Dekker.
[2] Curto, J. D. and Pinto, J. C. (2009). The coefficient of variation asymptotic distribution in the case of non-iid random variables. Journal of Applied Statistics, 36, 21-32.
[3] DeVor, R. E., Chang, T. H. and Sutherland, J. W. (1992). Statistical Quality Design and Control: Contemporary Concepts and Methods. Macmillan.
[4] Graybill, F. and Wang, C. M. (1980). Confidence intervals on nonnegative linear combinations of variances. Journal of the American Statistical Association, 75, 869-873.
[5] Groeneveld R. A. (2011). Influence functions for the coefficient of variation, its inverse, and CV comparisons. Communications in Statistics - Theory and Methods, 40, 4139-4150.
[6] Guo, H. and Krishnamoorthy, K. (2004). New approximate inferential methods for the reliability parameter in a stress-strength model: the normal case. Communications in Statistics-Theory and Methods, 33, 1715-1731.
[7] Hoffman, D. (2010). One-sided tolerance limits for balanced and unbalanced random effects models. Technometrics, 52, 303-312.
[8] Hoffman, D. and Kringle R. (2005). Two-sided tolerance intervals for balanced and unbalanced random effects models. Journal of Biopharmaceutical Statistics, 15, 283-293.
[9] Howe, W. G. (1969). Two-sided tolerance limits for normal distributions - some improvements. Journal of the American Statistical Association, 64, 610-620.
[10] Hsu, J. C., Hwang, J. T. G., Liu, H. K. and Ruberg, S. J. (1994). Confidence intervals associated with test for bioequivalence. Biometrika, 81, 103-114.
[11] Hunt, J. W., Anderson, B. S., Phillips, B. M., Newman, J., Tjeerdema, R. S., Fairey, R., Puckett, H. M., Stephenson, M., Simth, R. W., Wilson, C. J. and Taberski, K. M. (2001). Evaluation and use of sediment toxicity reference sites for statistical comparisons in regional assessments. Environmental Toxicology and Chemistry, 20, 1266-1275.
[12] Iyer, H. K. and Patterson, P. D. (2002). A recipe for constructing generalized pivotal quantities and generalized confidence intervals. Technical report 2002/10, Department of Statistics, Colorado State University.
[13] Kececioglu, D. and Lamarre, G. (1978). Mechanical reliability confidence limits. Journal of Mechanical Design, 100, 607-612.
[14] Krishnamoorthy, K. and Mathew, T. (2004). One-sided tolerance limits in balanced and unbalanced one-way random models based on generalized confidence intervals. Technometrics, 46, 44-52.
[15] Krishnamoorthy, K., Mathew, T. and Mukherjee, S. (2008). Normal-based methods for a Gamma distribution: prediction and tolerance intervals and stress-strength reliability. Technometrics, 50, 69-78.
[16] Lai, Y. H., Yen, Y. F. and Chen, L. A. (2012). Validation of tolerance interval. Journal of Statistical Planning and Inference, 142, 902-907.
[17] Lee, Y., Shao, J. and Chow, S. C. (2004). Modified large-sample confidence intervals for linear combinations of variance components: extension, theory, and application. Journal of the American Statistical Association, 99, 467-478.
[18] Liao, C. T. and Iyer, H. K. (2004). A tolerance interval for the normal distribution with several variance components. Statistica Sinica, 14, 217-229.
[19] Liao, C. T., Lin, T. Y. and Iyer, H. K. (2005). One- and two-sided tolerance intervals for general balanced mixed models and unbalanced one-way random models. Technometrics, 47, 323-335.
[20] Montgomery, D. C. (2005). Introduction to statistical quality control. 5th ed. NY: John Wiley & Sons, Inc.
[21] Nairy, K. S. and Rao, K. A. (2003). Tests of coefficient of variation of normal populations. Communications in Statistics - Simulation and Computation, 32, 641-661.
[22] Ott, E. R., Schilling, E. G. and Neubauer, D. V. (2005). Process quality control. 4th ed. Milwaukee, WI: ASQ Quality Press.
[23] Patterson, P. L. (2006). Generalized inference for mixed linear models. Ph.D. dissertation, Colorado State University, Fort Collins, CO.
[24] Perakis, M. and Xekalaki, E. (2002). A process capability index that is based on the proportion of conformance. Journal of Statistical Computation and Simulation, 72, 707-718.
[25] Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2, 110-114.
[26] Sharma, K. K. and Krishna, H. (1994). Asymptotic sampling distribution of inverse coefficient-of-variation and its applications. IEEE Transactions on Reliability, 43, 630-633.
[27] Shu, W. S., Ye, Z. H., Zhang, Z. Q., Lan, C. Y. and Wong, M. H. (2005). Natural colonization of plants on five lead/zinc mine tailings in southern China. Restoration Ecology, 13, 49-60.
[28] Smith, R. W. (2002). The use of random-model tolerance intervals in environmental monitoring and regulation. Journal of Agricultural, Biological, and Environmental Statistics, 7, 74-94.
[29] Smith, J. G., Beauchamp, J. J. and Stewart, A. J. (2005). Alternative approach for establishing acceptable thresholds on macroinvertebrate community metrics. Journal of the North American Benthological Society, 24, 428-440.
[30] Thomas, J. D. and Hultquist, R. A. (1978). Interval estimation for the unbalanced case of the one-way random effects model. Annals of Statistics, 6, 582-587.
[31] Ting, N., Burdick, R. K., Graybill, F. A., Jeyaratnam, S. and Lu, T. F. C. (1990). Confidence intervals on linear combinations of variance components that are unrestricted on sign. Journal of Statistical Computation and Simulation, 35, 135-143.
[32] Wang, C. M. and Lam, C. T. (1996). Confidence limits for proportion of conformance. Journal of Quality Technology, 28, 439-445.
[33] Wang, H. and Tsung, F. (2009). Tolerance intervals with improved coverage probabilities for binomial and Poisson variables. Technometrics, 51, 25-33.
[34] Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association, 88, 899-905.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top