跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝文耀
研究生(外文):Wen-Yao Hsieh
論文名稱:成長於矽基板上的鍺基多重量子井之結構與光學特性分析
論文名稱(外文):Structure and Optical Properties of Ge-based Multiple-quantum-well on Si
指導教授:張國恩張國恩引用關係
指導教授(外文):Guo-En Chang
口試委員:呂明諺楊斯博
口試委員(外文):Ming-Yan LyuSih-Bo Yang
口試日期:2015-03-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:鍺/矽鍺多重量子井鍺錫/鍺多重量子井拉伸應變量子侷限效應能量因子
外文關鍵詞:Ge/SiGe Multiple quantum wellGeSn/Ge Multiple quantum wellTensile strainQuantum confinement effectPower factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
由於光學通訊相較於電子通訊有三大優點:(1)低耗損率:光通訊在光纖傳輸過程中耗損率相當低。(2)速度:光學通訊於真空中傳遞的速度遠勝於以銅線為載體的電子通訊。(3)頻寬:光通訊中,不同波長的光不會互相干擾,利用這點可以大大提升光學通訊的傳輸頻寬。綜合以上三點,發展光通訊元件將在未來的通訊領域中佔有重要地位。為了能製作可整合於現今積體電路之發光元件,本文探討成長於矽基板的鍺基多重量子井之結構與光學特性。
本文使用拉曼光譜得知鍺/矽鍺多重量子井中鍺及矽鍺層的拉曼位移,接著使用經驗公式求出鍺層的拉伸應變為0.21%,而矽鍺層的鍺濃度為89%,拉伸應變為1.01%。藉由穿透式電子顯微鏡觀察鍺/矽鍺多重量子井各層的厚度,其中緩衝層的厚度只有120nm,未來製作波導型PIN發光元件將可因此減低光損失。接著使用光激螢光頻譜中得知螢光波長移至1540nm,此波長接近光通訊中能量損耗最低的波段。在發光效率方面,舊型量子井結構之能量因子為1.39,添加拉伸應變之量子井的能量因子為2.25,其發光效率勝於舊型量子井結構,發光行為由激子躍遷所主導,且激子主要由激發光源產生。
鍺錫/鍺多重量子井方面,有兩片樣品,量子井結構為實驗組,另外成長同濃度的鍺錫薄膜為對照組,目的於探討量子井對於鍺錫材料之影響。本文於穿透式電子顯微鏡之影像中可觀察到缺陷都被緩衝層吸收。接著由二次離子質譜儀得知鍺錫/鍺多重量子井的二次離子質譜,結合二次離子質譜中不同材料的能量分佈及經驗公式求得鍺錫/鍺多重量子井中的錫濃度為2.27%。由光激螢光頻譜得知,鍺錫/鍺多重量子井的波峰為1725nm,鍺錫薄膜為1755nm,由於量子侷限效應使準費米能階向導電帶底部及價電帶頂部移動導致波峰往高能量移動30nm。鍺錫/鍺多重量子井的能量因子為2.57,鍺錫薄膜的能量因子為1.73,鍺錫/鍺多重量子井的發光效率勝於鍺錫薄膜,且發光行為主要由激發光源所產生的激子之躍遷主導。

Compared to electronic communications, optical communications has many advantages. So the development of optical communication components will play an important role in the field of communications at the future. In order to produce the light emitting element which can be integrated in today's integrated circuits. This paper discusses the structure and optical properties of Ge-based multiple-quantum-well on Si.
We use Raman spectroscopy to know raman shift of Ge and SiGe layer in Ge / SiGe MQW. Then we determined the tensile strain of Ge layer is 0.21%, the tensile strain of SiGe layer is 1.01%, and the concentration of Ge is 89%by empirical formula. We discover the thickness of buffer layer in Ge / SiGe MQW by TEM is only 120nm. It will reduce the optical loss in produce waveguide type PIN-emitting element at Future By Photoluminescence, We observe that the wavelength of luminescence move to 1540nm which is the lowest energy loss in optical communication. In luminous efficiency, The power factor of old QW structure is 1.39. And MQW with tensile strain is 2.25. The luminous efficiency is better than the old one. And luminescence is dominated by excitonic transition which is produced primarily by the excitation light source.
For the purpose to investigate the impact between GeSn/Ge MQW and Ge film. We have two samples, GeSn/Ge MQW as experimental group and GeSn film as the control group. We observed the defects were absorbed in the buffer layer by TEM. And we find out the concentration of Sn in GeSn/Ge MQW is 2.27% by SIMS. By Photoluminescence, we aware of the luminescence wavelength of GeSn/Ge MQW is 1725nm and Ge film is 1755nm.The reason is the quasi-fermi level will move to the bottom of the conductive band and the top of valence band by quantum confinement effect.The power factor of GeSn/Ge MQW is 2.57 and Ge film is 1.73. The luminous efficiency is better than Ge film. And luminescence is dominated by excitonic transition which is produced primarily by the excitation light source.

中文摘要 i
英文摘要 ii
表目錄 iii
圖目錄 iv
第一章 緒論 1
第二章 研究背景及文獻回顧 5
2-1 半導體異質結構對於發光特性之影響 6
2-2 應變對於能隙之影響 7
2-3 矽鍺材料系統 8
2-3-1 電子能帶結構 8
2-3-2 文獻回顧 9
2-4 鍺錫材料系統 17
2-4-1 鍺錫材料特性 17
2-4-2 文獻回顧 18
第三章 實驗架設及原理 26
3-1 光激螢光原理及架設 26
3-1-1 實驗架設 27
3-1-2 多功能自動化量測系統之開發 28
3-1-3 量測參數對於訊號擷取之影響 30
3-2 拉曼光譜儀 32
3-3 穿透式電子顯微鏡 32
3-4 二次離子質譜儀 33
第四章 具張應變的鍺/矽鍺量子井之結構與光學性質 35
4-1 樣品結構 35
4-2 拉曼光譜實驗與成分及應變分析 38
4-3 光激螢光發光特性 40
第五章 鍺錫/鍺量子井之結構與光學性質 46
5-1 樣品結構 46
5-2 成分分析 48
5-3 光激螢光發光特性分析 50
第六章 結論及未來展望 53
6-1 結論 53
6-1-1 鍺/矽鍺量子井 53
6-1-2 鍺錫/鍺量子井 53
6-2 未來展望 54
6-2-1 進一步提升鍺/矽鍺量子井之發光效率 54
6-2-2 深入探討鍺錫/鍺量子井之光學特性 54
參考文獻 56


[1]http://www.techbang.com/posts/12234-challenge-what-moore-encounters-bottlene
cks-how-four-semiconductor-companies-to-join-hands-to-catch-up-with
[2]http://www.ausairpower.net/OSR-0700.html
[3]R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, and D. W-
elch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s, ” Electronics Letters. 42(13), 771-773 (2006).
[4]http://www.eecs.berkeley.edu/Research/Projects/Data/107125.html
[5]http://www.moneydj.com/KMDJ/wiki/WikiViewer.aspx?Title=LIGHT%20PEAK
[6]http://benevo.pixnet.net/blog/post/47913370hdmi%E6%9C%80%E9%81%A0%E7%9A%84%E5%82%B3%E8%BC%B8%E8%B7%9D%E9%9B%A2%E5%88%B0%E5%A4%9A%E5%B0%91%EF%BC%9F
[7]http://textbookstop.wordpress.com/2011/02/24/thunderbolt-goodbye-usb/
[8]J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel,“Te-nsile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,”Optics Express. 15(18), 11272 (2007).
[9]M. V. Fischetti, and S. E. Laux,“Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, ” Journal of Applied Physics 80(4), 2234-2252 (1996).
[10]Yijie. Huo,“Strained Ge and GeSn band engineering for Si photonic integrated-circuits,”Dissertation International, Stanford University, (2010).
[11]Richard A. Soref, and Clive H. Perry. “Predicted band gap of the new semicoductor SiGeSn, ” Journal of Applied Physics. 69(1), 539-541 (1991).
[12]http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html
[13]http://www.ioffe.ru/SVA/NSM/Semicond/Ge/bandstr.html
[14]J. Weber, and M. I. Alonso,“Near-band-gap photoluminescence of Si-Ge alloys
, ” Physical Review. B40(8), 5683 (1989).
[15]Douglas J. Paul,“Si/SiGe heterostructures: from material and physics to devices and circuits,”Semiconductor Science and Technology. 19(10), R75 (2004).
[16]Friedrich. Schäffler,“High-mobility Si and Ge structures,”Semiconductor Sci-
ence and Technology. 12(12), 1515 (1997).
[17]N. L. Rowell, G. C. Aers, H. Lafontaine, and R. L. Williams,“Photoluminescen-
ce in UHV-CVD-grown Si1−xGex quantum wells on Si (100): band alignment variation with excitation density and applied uniaxial stress,”Thin Solid Films. 321
(1), 158-162 (1998).
[18]H. von Känel,“Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition,” Applied Phy-
sics Letters. 80(16), 2922-2924 (2002).
[19]M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, and A. Neels, “Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich bariers,”Ph-ysical Review. B78(4), 041407 (2008).
[20]Yang-hua Chen, C. Li, Z. Zhou, H. Lai, S. Chen,W. Ding, and Y. Yu,“Room te-perature photoluminescence of tensile-strained Ge/Si0.13Ge0.87 quantum wells gro-
wn on silicon-based germanium virtual substrate,”Applied Physics Letters. 94
(14), 141902-141902 (2009).
[21]P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, a-
nd L.Vivien,“Room temperature direct gap electroluminescence from
Ge/Si0.15-Ge0.85multiple quantum well waveguide,”Applied Physics Letters. 99(14), 141106 (2011).
[22]E. Gatti, E. Grilli, M. Guzzi, D. Chrastina, G. Isella, and H. Von Känel,“Room temperature photoluminescence of Ge multiple quantum wells with Ge-rich bar-riers,Applied Physics Letters. 98(3), 031106 (2011).
[23]P. H. Wu, D. Dumcenco, Y. S. Huang, H. P. Hsu, C. H. Lai, T. Y. Lin, and K. K. Tiong,“Above-room-temperature photoluminescence from a strain-compensated Ge/Si0.15 Ge0.85multiple-quantum-well structure,”Applied Physics Letters. 100
(14), 141905 (2012).
[24]G. He, and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Physical R-
eview Letters. 79(10), 1937 (1997).
[25]J. Kouvetakis, J. Menendez, and A. V. G. Chizmeshya, “Tin-based group IVse-miconductors: new platforms for opto- and microelectronics on silicon,” Annual Review Of Materials Research. 36, 497-554 (2006).
[26]J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy sy-
stem,” Physical Review. B75(4), 045208 (2007).
[27]S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Skai, “Gro
wth of highly strain-relaxed Ge1-xSnx/virtual Ge by a Sn precipitation controlled-compositionally step-graded method,” Applied Physics Letters. 92(23), 231916-231916(2008).
[28]http://www.crct.polymtl.ca/fact/phase_diagram.php?file=Ge-Sn.jpg&dir=SGTE
[29]I. S. Yu, K. Y. Wu, K. Y. Wang, T. H. Wu, H. H. Cheng, V. Ulyanov, and O. P. Pchelyakov,“Strained Ge1-xSnxthin film on Ge (100) with low temperature Ge buffer layer,”Nanoelectronics Conference (INEC), (2010).
[30]J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis, and J.Mené-
ndez, “Direct-gap photoluminescence with tunable emission wavelength in
Ge1−ySnyalloys on silicon,” Applied Physics Letters. 97(22), 221912 (2010).
[31]R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySnyp-in heterostructure diodes,”
Applied Physics Letters. 98(6), 061109 (2011).
[32]R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased p
hotoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Applied Physics Letters. 99(18), 181125 (2011).
[33]G. Grzybowski, L. Jiang, J. Mathews, R. Roucka, C. Xu, R. T. Beeler, and J.Me-
né ndez, “Photoluminescence from heavily doped GeSn: P materials grown on Si (100),” Applied Physics Letters. 99(17), 171910 (2011).
[34]M. El Kurdi, T. Kociniewski, T. P. Ngo, J. Boulmer, D. Dee´barre, P. Boucaud,J. F. Damlencourt, O. Kermarrec, and D. Bensahel, “Enhanced photoluminescence of heavily n-doped germanium,” Applied Physics Letters. 94(19), 191107 (2009).
[35]H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Optical properties of Ge1−zSnz/SixGe1−x−y Sny heterostructures,” Photonics Conference (IPC), (2012).
[36]G. E. Chang, W. Y. Hsieh, J. Z. Chen, and H. H. Cheng, “Quantum-confined pho-toluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si (001) substrates,” Optics Letters. 38(18), 3485-3487 (2013).
[37]R. Chen, S. Gupta, Y. C. Huang, Y. Huo, C. W. Rudy, E. Sanchez, and J. S. Harris, “Demonstration of a Ge/GeSn/Ge Quantum-Well Microdisk Resonator on Silicon: Enabling High-Quality Ge (Sn) Materials for Micro-and Nanophotonics,” Nano Letters. 14(1), 37-43 (2013).
[38]R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,”Applied Physics Letters. 63(10), 1310-1312 (1993).
[39]SR830鎖向放大器說明書
[40]http://www.chemicool.com/definition/monochromators.html
[41]莫定山,拉曼光譜原理及應用
[42]http://www.ym.edu.tw/biophotonics-ultrasound-lab/research/raman_2.htm
[43]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-TEM/FE-TEM010.pdf
[44]http://commons.wikimedia.org/wiki/File:TEM_ray_diag2.basic.de.png
[45]http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter6_report.pdf
[46]http://www.in-the-loop.net.au/fp-breakthrough-on-paper/
[47]L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Applied Physics Letters. 72(24), 3175-3177 (1998).
[48]J. Z. Chen, H. Li, H. H. Cheng, and G. E. Chang, “Structural and optical charac-teristics of Ge 1− x Snx/Ge superlattices grown on Ge-buffered Si (001) wafers,”
Optical Materials Express. 4(6), 1178-1185 (2014).
[49]F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, and G. B-
auer, “Raman spectroscopy determination of composition and strain in Si1-xGex
/Si heterostructure,” Materials Science in Semiconductor Processing. 11(5), 279-284 (2008).
[50]J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice Parameter and Density in Ge-
rmanium-Silicon Alloys1,”The Journal of Physical Chemistry. 68(10), 3021-3027 (1964).
[51]T. Taguchi , J. Shirafuji, and Y. Inuishi,“Excitonic emission in cadmium telluride,”
Physica Status Solidi (b). 68(2), 727-738 (1975).
[52]R. R. Lieten, K. Bustillo, T. Smets, E. Simoen, J. W. Ager III, E. E. Haller, and J. P. Locquet, “Photoluminescence of bulk germanium,” Physical Review B. 86(3), 035204 (2012).
[53]http://www.ccut.edu.tw/teachers/wentse/downloads/laser0-2.ppt
[54]G. Guryanov, T. S. Clair, R. Bhat, C. Caneau, S. Nikishin, B. Borisov,and A. Budrevich, “SIMS quantitative depth profiling of matrix elements in semiconductor layers,” Applied Surface Science. 252(19), 7208-7210 (2006).
[55]Guo-En Chang, and Chia-Ou Chang,“Tensile-strained Ge/SiGeSn quantum wel-
ls for polarization-insensitive electro-absorption waveguide modulators,”Quant-
um Electronics, IEEE Journal. 48(4), 533-541 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top