跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范淑雅
研究生(外文):FAN, SHU YA
論文名稱:利用微波裂解程序轉製生質廢棄物為吸附劑之研究
論文名稱(外文):Transforming bio-waste into adsorbents by a microwave–induced pyrolysis method.
指導教授:官文惠官文惠引用關係
指導教授(外文):Kuan, Wen-Hui
口試委員:闕蓓德蘇峰生
口試委員(外文):Chiueh, Pei-TeFeng-sheng Su
口試日期:2017-01-18
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:111
中文關鍵詞:微波誘發裂解生質廢棄物吸附劑含銀活性碳二氧化碳
外文關鍵詞:microwave–induced pyrolysisbio-wastebio-adsorbentssilver-impregnated bio-adsorbentiodideCO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本研究係透過微波裂解程序,誘使不同植物性生質廢棄物進行熱裂解反應,以探討微波裂解誘發生質廢棄物殘餘固相產物作為吸附劑之可利用性。藉由各起始材料所含之化學組成分不同而開發出不同物化特性之吸附劑,再透過污染物之吸附實驗測試進行評估。本研究之技術具備低成本、新穎性及回收再利用等優勢,且能達到生質廢棄物資源再利用之目的。
結果顯示透過微波裂解程序轉至不同化學組成之植物性生質廢棄物為吸附劑,其N2吸附曲線皆為第Ⅳ型等溫吸脫附曲線,以窄縫型孔隙所構成。而影響各吸附劑之孔洞結構與起始材料所含之木質素及纖維素含量最具關連性。透過熱重分析儀(TGA)進行CO2之吸附實驗,固相產物中以GAC-玉米莖所得到之吸附效果最佳為58.65 mg/g,其與文獻中提及的活性碳吸附效果相近,此現象可說明,對於將微波裂解氣相產物收集後之殘餘固相產物對於CO2去除能力是有價值的,可再進行更深入的探討。
另外,本研究亦對水中污染物碘離子進行探討,透過3種由微波裂解Ⅲ製備之吸附劑與市售之活性碳進行比較。其結果顯示各吸附劑在酸性環境下所得到的吸附效果較佳,批覆銀於活性碳之吸附效果又更加提升。實驗中以SIAC-花生殼對於水中碘之吸附效果最好,為555.98μmole/g。此結果顯示,透過微波裂解製備之吸附劑浸漬銀進行水中碘之吸附是可行的,且吸附實驗選用高濃度之碘污染物環境(150μM),若更深入之探討可能對於光電產業之廢水碘回收有所幫助

This study utilized the microwave–induced pyrolysis to pyrolyze different bio-waste into bio-adsorbents. Because of the varied characteristics of original bio-waste, the bio-adsorbents showed quite different physical and chemical properties. A series of adsorption experiments were conducted to evaluate the feasibility of the bio-adsorbent applied to contaminant removal and material recovery. The technology of this research has the advantages of low cost, novelty and recycling, etc., and can achieve the purpose of recycling of waste resources.
By the analysis of N2-adsorption-desorption, all the produced bio-adsorbents displayed the properties of type Ⅳ isotherm and slit-shaped opening. The pore structure of bio-adsorbent is mostly related to the lignin and cellulose content in the starting waste. The measurements of CO2 adsorption on the bio-adsorbents were carried out by thermogravimetric analyzer (TGA). Among all the produced bio-adsorbents, the bio-adsorbent derived from the waste corn showed the best adsorption performance of 58.65 mg CO2/g bio-adsorbent, which value is competent to the commercial activated carbon published in previous literatures. The results indicated that the methods to produce bio-adsorbents was feasible and could be further explored.
In addition, this study also carried out the waste iodide stream recovery by comparing three bio-adsorbents prepared by microwave–induced pyrolysis with a commercially available activated carbon. The results showed that the iodide adsorption yield better performance in acidic condition than alkaline. Furthermore, a coating of silver ion on bio-adsorbents could enhance the iodide recovery. In the experiment, the silver ion impregnated bio-adsorbent derived from waste peanut shells had the best iodide adsorption of 555.98 μmole iodide/g silver-impregnated-bio-adsorbent. The results show that it is feasible to adsorb iodide from water by silver-coated bio-adsorbent. The results may be helpful for the iodide recovery from waste stream in the optoelectronic industry

明志科技大學碩士論文指導教授推薦書 i
明志科技大學碩士論文口試委員會審定書 ii
致謝 iii
摘要 iv
英文摘要 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
1.1研究緣起 1
1.2研究目的與內容 3
第二章 文獻回顧 4
2.1生質廢棄物 4
2.2生質廢棄物組成份概述 5
2.2.1纖維素 6
2.2.2半纖維素 7
2.2.3木質素 7
2.3微波裂解程序原理 8
2.3.1微波加熱相互作用 11
2.3.2微波加熱的特性 13
2.4微波技術運用 16
2.5活性碳簡介 17
2.5.1活性碳物化特性/結構 17
2.5.2活性碳的應用 21
2.5.3 CO2之吸附 22
2.5.4碘的回收與再生 23
2.5.5含銀活性碳製備 25
2.5.6含銀活性碳(SIAC)對I-的吸附機制 27
第三章 材料與方法 28
3.1研究架構 29
3.2實驗設備與材料 30
3.2.1實驗材料 30
3.2.2實驗設備 32
3.3固相產物製備 34
3.3.1固相產物製備(GAC) 34
3.3.2含銀活性碳碳製備(SIAC) 37
3.4碘吸附實驗 38
3.4.1碘溶液配置 38
3.4.2固相產物(GAC)對水中碘的吸附實驗 38
3.4.3 pH對於含銀活性碳對水中碘的吸附實驗之影響 38
3.4.4含銀活性碳對水中碘的吸附之動力吸附實驗 38
3.4.5含銀活性碳對水中碘的吸附之等溫吸附實驗 39
3.4.6 含銀活性碳再生實驗 39
3.5等溫吸附模式 39
3.5.1 Freundlich吸附理論 39
3.5.2 Langmuir吸附理論 40
3.6動力學分析 41
3.6.1擬一階動力學模型 41
3.6.2擬二階動力學模型 42
3.5分析方法 43
3.5.1樣品之近似成分分析 43
3.5.2活性碳碘值標準測定法 45
3.5.3元素分析儀 46
3.5.4熱重分析儀 47
3.5.6比表面積分析儀 48
3.5.7界達電位分析儀 52
3.5.8高效能液相層析儀 52
3.5.9感應耦合電漿原子發射光譜分析儀 54
第四章 結果與討論 55
4.1生質廢棄物背景分析 56
4.1.1近似成分分析 56
4.1.2元素分析 57
4.1.3礦物質分析結果 58
4.1.4熱重量變化分析 59
4.2固相產物 63
4.2.1元素分析結果 63
4.2.2比表面積分析儀分析結果 63
4.2.3界達電位分析結果 67
4.2.4活性碳吸附指標-碘值量測 68
4.2.5 CO2吸附結果分析 68
4.2.6水中碘吸附結果分析 71
4.3含銀吸附劑 72
4.3.1比表面積分析儀分析結果 72
4.3.2界達電位分析結果 76
4.3.3 pH值對於水中碘吸附之影響 77
4.3.4吸附動力曲線 79
4.3.5等溫吸附曲線 81
4.3.6含銀活性碳與固相產物對於水中碘之吸附效果比較 83
4.3.7再生含銀活性碳之效能評估 85
第五章 結論與建議 86
5.1結論 86
5.2建議 88
參考文獻 89


圖目錄
圖2.1樣品之化學組成成份 5
圖2.2纖維素之構造式 6
圖2.3木質素與纖維素可能的結合方式 8
圖2.4各系統中所用頻率與波長範圍 8
圖2.5偶極矩分子在微波電場之排列方式 10
圖2.6微波吸附介質特性示意圖 12
圖2.7微波與傳統熱裂解熱傳導效應之示意圖 15
圖2.8常見之含氧官能基結構示意圖 19
圖2.9常見之含氮官能基結構示意圖 20
圖2.10銀沉積於碳表面之官能基 26
圖3.1研究架構 29
圖3.2微波誘發裂解裝置圖 34
圖3.3微波誘發裂解裝置示意圖 35
圖3.4 BET原理適用範圍示意圖 48
圖3.5不同相對壓力範圍與孔洞結構之關係圖 49
圖3.6根據IUPAC 分類歸納出來的六類等溫吸附線示意圖 50
圖3.7 遲滯曲線的四種型態 51
圖4.1各樣品材料經微波裂解後之固相產物佔比 55
圖4.2各樣品材料TGA熱重量損失曲線 60
圖4.3樣品材料熱重量損失速率曲線積分結果 62
圖4.4木質素與固相產物比表面積關係圖 65
圖4.5纖維素與平均孔徑關係圖 65
圖4.6半纖維素與固相產物比表面積關係圖 66
圖4.7各固相產物之N2等溫吸附-脫附曲線 66
圖4.8各固相產物之界達電位分析結果 67
圖4.9各固相產物在室溫下二氧化碳吸附結果 69
圖4.10各固相產物對於水中碘之吸附結果 71
圖4.11 含銀前後固相產物之N2等溫吸-脫附曲線 75
圖4.12含銀活性碳與固相產物之界達電位比較圖 76
圖4.13各含銀活性碳之pH值等溫吸附曲線 77
圖4.14吸附前後pH值變化 78
圖4.15含銀活性碳對於水中碘之吸附動力曲線 80
圖4.16含銀活性碳對於水中碘之吸附動力與模擬值 80
圖4.17含銀活性碳對於水中碘之等溫吸附實驗 82
圖4.18 以Langmuir及Freundlich等溫吸附模式迴歸 82
圖4.19含銀活性碳與固相產物之吸附效果比較 84
圖4.20再生含銀活性碳之吸附效果 85

表目錄
表2.1生質廢棄物特性區分 4
表2.2植物性生質廢棄物之木質纖維素成分組成 6
表2.3各系統所用之頻率與波長範圍 9
表2.4活性碳之孔隙大小分布狀況 18
表3.1微波裂解實驗參數 34
表3.2微波誘發裂解裝置各單元名稱 35
表3.3 Iodide分析條件設定 53
表4.1各樣品材料近似分析比較 56
表4.2各樣品材料之元素分析 57
表4.3各樣品材料之礦物質含量分析 58
表4.4樣品材料之化學組成模擬結果 61
表4.7固相產物(GAC)樣品碘值吸附量 68
表4.8活性碳和固相產物在大氣壓下對CO2的吸附能力比較表 70
表4.9含銀活性碳之比表面積分析結果 74
表4.10 擬一階與擬二階動力模擬之參數表 79
表4.11含銀活性碳去除水中碘之等溫吸附模式參數表 81
表4.12吸附劑對水中碘的吸附能力比較表 84


Alcañiz-Monge, J.; Marco-Lozar, J. P.; Lillo-Ródenas, M. Á. (2011) “CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch” Fuel Processing Technology, 92, 5, 915-919.
Apaydin-Varol, E.; Pütün, E.; Pütün, A. E. (2007) “Slow pyrolysis of pistachio shell” Fuel, 86, 12–13, 1892-1899.
Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. (2003) “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties” Microporous and Mesoporous Materials, 66, 2, 189-195.
Balsley, S. D.; Brady, P. V.; Krumhansl, J. L.; Anderson, H. L. (1998) “Anion scavengers for low-level radioactive waste repository backfills” Journal of soil contamination, 7, 2, 125-141.
Bandyopadhyaya, R.; Sivaiah, M. V.; Shankar, P. (2008) “Silver‐embedded granular activated carbon as an antibacterial medium for water purification” Journal of chemical technology and biotechnology, 83, 8, 1177-1180.
Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. (2013) “An overview of the modification methods of activated carbon for its water treatment applications” Chemical Engineering Journal, 219, 499-511.
Bridgeman, T. G.; Darvell, L. I.; Jones, J. M.; Williams, P. T.; Fahmi, R.; Bridgwater, A. V.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S. C.; Donnison, I. S. (2007) “Influence of particle size on the analytical and chemical properties of two energy crops” Fuel, 86, 1–2, 60-72.
Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.-M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. (2011) “Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass” Biomass and Bioenergy, 35, 1, 298-307.
Chen, C. (2015) “Bromide Removal from Surface Waters by Silver Impregnated Activated Carbon”.
Chen, W.-H.; Kuo, P.-C. (2011) “Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis” Energy, 36, 11, 6451-6460.
Choi, S.; Drese, J. H.; Jones, C. W. (2009) “Adsorbent materials for carbon dioxide capture from large anthropogenic point sources” ChemSusChem, 2, 9, 796-854.
Coss, P. M.; Cha, C. Y. (2000) “Microwave regeneration of activated carbon used for removal of solvents from vented air” Journal of the Air & Waste Management Association, 50, 4, 529-535.
D'Alessandro, D. M.; Smit, B.; Long, J. R. (2010) “Carbon dioxide capture: prospects for new materials” Angewandte Chemie International Edition, 49, 35, 6058-6082.
De la Rosa-Gómez, I.; Olguin, M.; Alcántara, D. (2008) “Antibacterial behavior of silver-modified clinoptilolite–heulandite rich tuff on coliform microorganisms from wastewater in a column system” Journal of environmental management, 88, 4, 853-863.
Domı́, A.; Menendez, J.; Inguanzo, M.; Bernad, P.; Pis, J. (2003) “Gas chromatographic–mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges” Journal of chromatography A, 1012, 2, 193-206.
Doumas, J. J.; Molof, A. H.; Raymond, G. H.; Wikstrom, L., Process and apparatus for treating drinking water. Google Patents: 1980.
Foo, K. Y.; Hameed, B. H. (2011) “Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation” Bioresource Technology, 102, 20, 9814-9817.
Gergova, K.; Petrov, N.; Eser, S. (1994) “Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis” Carbon, 32, 4, 693-702.
Gosselink, R. J. A.; de Jong, E.; Guran, B.; Abächerli, A. (2004) “Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN)” Industrial Crops and Products, 20, 2, 121-129.
Hall, C. R.; Holmes, R. J. (1992) “The preparation and properties of some activated carbons modified by treatment with phosgene or chlorine” Carbon, 30, 2, 173-176.
Hoseinzadeh Hesas, R.; Wan Daud, W. M. A.; Sahu, J. N.; Arami-Niya, A. (2013) “The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review” Journal of Analytical and Applied Pyrolysis, 100, 1-11.
Hoskins, J. S.; Karanfil, T.; Serkiz, S. M. (2002) “Removal and sequestration of iodide using silver-impregnated activated carbon” Environmental science & technology, 36, 4, 784-789.
Huang, Y.-F.; Chiueh, P.-T.; Shih, C.-H.; Lo, S.-L.; Sun, L.; Zhong, Y.; Qiu, C. (2015) “Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture” Energy, 84, 75-82.
Jones, D. A.; Lelyveld, T. P.; Mavrofidis, S. D.; Kingman, S. W.; Miles, N. J. (2002) “Microwave heating applications in environmental engineering—a review” Resources, Conservation and Recycling, 34, 2, 75-90.
Kaufhold, S.; Pohlmann-Lortz, M.; Dohrmann, R.; Nüesch, R. (2007) “About the possible upgrade of bentonite with respect to iodide retention capacity” Applied Clay Science, 35, 1–2, 39-46.
Kingston, H. M.; Lassie, L. B. (1988) “Introduction to Microwave Sample Preparation Theory and Practice” American Chemical Society.
Kubota, M.; Hata, A.; Matsuda, H. (2009) “Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating” Carbon, 47, 12, 2805-2811.
Kumar, A.; Wang, L.; Dzenis, Y. A.; Jones, D. D.; Hanna, M. A. (2008) “Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock” Biomass and Bioenergy, 32, 5, 460-467.
Kuprianov, V. I.; Arromdee, P. (2013) “Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: A comparative study” Bioresource Technology, 140, 199-210.
Kuznicki, S. M.; Kelly, D. J.; Bian, J.; Lin, C. C.; Liu, Y.; Chen, J.; Mitlin, D.; Xu, Z. (2007) “Metal nanodots formed and supported on chabazite and chabazite-like surfaces” Microporous and mesoporous materials, 103, 1, 309-315.
Lahaye, J. (1998) “The chemistry of carbon surfaces” Fuel, 77, 6, 543-547.
Li, S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. (2004) “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas” Fuel Processing Technology, 85, 8–10, 1201-1211.
Li, W.; Zhang, L.-b.; Peng, J.-h.; Li, N.; Zhu, X.-y. (2008) “Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation” Industrial Crops and Products, 27, 3, 341-347.
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. (2001) “Microwave assisted organic synthesis—a review” Tetrahedron, 57, 45, 9225-9283.
Lopez-Avila, V.; Young, R.; Beckert, W. F. (1994) “Microwave-assisted extraction of organic compounds from standard reference soils and sediments” Analytical Chemistry, 66, 7, 1097-1106.
Lou, R.; Wu, S.-b. (2011) “Products properties from fast pyrolysis of enzymatic/mild acidolysis lignin” Applied Energy, 88, 1, 316-322.
Lv, G.; Wu, S.; Yang, G.; Chen, J.; Liu, Y.; Kong, F. (2013) “Comparative study of pyrolysis behaviors of corn stalk and its three components” Journal of Analytical and Applied Pyrolysis, 104, 185-193.
Maroto-Valer, M. M.; Tang, Z.; Zhang, Y. (2005) “CO2 capture by activated and impregnated anthracites” Fuel Processing Technology, 86, 14–15, 1487-1502.
Menéndez, J.; Domínguez, A.; Fernández, Y.; Pis, J. (2007) “Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls” Energy & Fuels, 21, 1, 373-378.
Menéndez, J. A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E. G.; Bermúdez, J. M. (2010) “Microwave heating processes involving carbon materials” Fuel Processing Technology, 91, 1, 1-8.
Menéndez, J. A.; Domínguez, A.; Inguanzo, M.; Pis, J. J. (2005) “Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue” Journal of Analytical and Applied Pyrolysis, 74, 1–2, 406-412.
Mianowski, A.; Owczarek, M.; Marecka, A. (2007) “Surface area of activated carbon determined by the iodine adsorption number” Energy sources, part A, 29, 9, 839-850.
Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. (2004) “Rapid pyrolysis of wood block by microwave heating” Journal of Analytical and Applied Pyrolysis, 71, 1, 187-199.
Mohan, D.; Pittman, C. U.; Steele, P. H. (2006) “Pyrolysis of wood/biomass for bio-oil: a critical review. ” Energy & fuels, 20, 3, 848-889.
Oghbaei, M.; Mirzaee, O. (2010) “Microwave versus conventional sintering: A review of fundamentals, advantages and applications” Journal of Alloys and Compounds, 494, 1–2, 175-189.
Ortiz-Ibarra, H.; Casillas, N.; Soto, V.; Barcena-Soto, M.; Torres-Vitela, R.; de la Cruz, W.; Gómez-Salazar, S. (2007) “Surface characterization of electrodeposited silver on activated carbon for bactericidal purposes” Journal of colloid and interface science, 314, 2, 562-571.
Owen, D. M., Removal of DBP precursors by GAC adsorption. American Water Works Association: 1998.
Park, S.-J.; Jang, Y.-S. (2003) “Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior” Journal of colloid and interface science, 261, 2, 238-243.
Plaza, M. G.; González, A. S.; Pevida, C.; Pis, J. J.; Rubiera, F. (2012) “Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications” Applied Energy, 99, 272-279.
Reed, A. R.; Williams, P. T. (2004) “Thermal processing of biomass natural fibre wastes by pyrolysis” International Journal of Energy Research, 28, 2, 131-145.
Rutherford, S. W.; Do, D. D. (2000) “Adsorption dynamics of carbon dioxide on a carbon molecular sieve 5A” Carbon, 38, 9, 1339-1350.
Sanchez-Polo, M.; Rivera-Utrilla, J.; Salhi, E.; Von Gunten, U. (2007) “Ag-doped carbon aerogels for removing halide ions in water treatment” Water research, 41, 5, 1031-1037.
Schwehr, K. A.; Santschi, P. H. (2003) “Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection” Analytica Chimica Acta, 482, 1, 59-71.
Shafeeyan, M. S.; Daud, W. M. A. W.; Houshmand, A.; Arami-Niya, A. (2011) “Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation” Applied Surface Science, 257, 9, 3936-3942.
Shashikala, V.; Kumar, V. S.; Padmasri, A.; Raju, B. D.; Mohan, S. V.; Sarma, P. N.; Rao, K. R. (2007) “Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification” Journal of Molecular Catalysis A: Chemical, 268, 1, 95-100.
Shen, D. K.; Gu, S. (2009) “The mechanism for thermal decomposition of cellulose and its main products” Bioresource Technology, 100, 24, 6496-6504.
Sing, K. S. (1985) “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)” Pure and applied chemistry, 57, 4, 603-619.
Thakur, S. K.; Kong, T. S.; Gupta, M. (2007) “Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites” Materials Science and Engineering: A, 452–453, 61-69.
Wei, H.; Deng, S.; Hu, B.; Chen, Z.; Wang, B.; Huang, J.; Yu, G. (2012) “Granular Bamboo‐Derived Activated Carbon for High CO2 Adsorption: The Dominant Role of Narrow Micropores” ChemSusChem, 5, 12, 2354-2360.
Xie, Z.; Yang, J.; Huang, X.; Huang, Y. (1999) “Microwave processing and properties of ceramics with different dielectric loss” Journal of the European Ceramic Society, 19, 3, 381-387.
Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. (2010) “Preparation of high surface area activated carbon from coconut shells using microwave heating” Bioresource Technology, 101, 15, 6163-6169.
Zhang, S.; Fu, R.; Wu, D.; Xu, W.; Ye, Q.; Chen, Z. (2004) “Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels” Carbon, 42, 15, 3209-3216.
林文清. 微晶纖維素廢料之活性碳熱裂解資源化研究. 國立中央大學, 桃園市, 2007.
洪銘謙. 活性碳纖維布載奈米銀技術探討. 逢甲大學, 2008.
張峻愿. 不同前處理程序對微波誘發裂解玉米葉 氣相產物影響之研究. 明志科技大學, 新北市, 2015.
章裕民, 廢棄物處理. 新文京開發出版有限公司, 2003.
黃于峯. 微波誘發裂解生質廢棄物之研究. 國立臺灣大學, 台北市, 2010.
歐陽湘; 廖啟雯. “由二氧化碳減排看二氧化碳捕獲與封存技術發展”.
蔡永松. 微波輔助定量木材中Klason木質素法之商確. 國立中興大學, 台中市, 1999.
盧麒丞. 運用微波誘發裂解技術轉化農業廢棄物為可用能源之研究. 明志科技大學, 新北市, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top