跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖純慧
研究生(外文):Chun-Huei Liao
論文名稱:蓮子心多醣純化與其在動物體外和體內抗發炎作用之研究
論文名稱(外文):Purification and anti-inflammatory effects of a lotus (Nelumbo nucifera Gaertn) plumule polysaccharide in vitro and in vivo
指導教授:林金源林金源引用關係
指導教授(外文):Jin-Yuarn Lin
口試委員:林璧鳳林文川趙蓓敏胡淼琳
口試日期:2012-07-25
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:189
中文關鍵詞:抗發炎細胞激素蓮子心多醣非肥胖糖尿病小鼠初代脾臟細胞RAW264.7巨噬細胞類鐸接受器
外文關鍵詞:anti-inflammationcytokineslotus plumule polysaccharidenon-obese diabetic miceprimary splenocytesRAW264.7 macrophagesToll-like receptors
相關次數:
  • 被引用被引用:2
  • 點閱點閱:506
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多醣已知具有不同生理功能,但在免疫調節功能仍未完全釐清,本研究為比較不同來源多醣之免疫調節活性,選用四種食材經熱水萃取,再以酒精沉澱分離出多醣,分別獲得蓮子心多醣(lotus plumule polysaccharide, LPPS)、黑木耳多醣(tree mushroom polysaccharide, TMPS)、白甘藍菜多醣(white cabbage polysaccharide, WCPS)及紫甘藍菜多醣(red cabbage polysaccharide, RCPS),取這四種多醣非細胞毒性濃度進行研究,探討單獨添加或對以脂多醣(lipopolysaccharide, LPS)刺激脾臟細胞之影響,評估雌鼠初代脾臟細胞分泌促發炎與抗發炎細胞激素的變化,結果顯示,單獨添加LPPS與TMPS隨著添加濃度的增加,脾臟細胞促發炎的腫瘤壞死因子-α (tumor necrosis factor-α, TNF-α)/抗發炎的介白素-10 (interleukin-10, IL-10)細胞激素分泌比值隨之降低,顯示LPPS與TMPS均具有抗發炎潛力;在以LPS刺激脾臟細胞發炎模式下,四種多醣中,僅LPPS隨著添加濃度的增加,脾臟細胞TNF-α/IL-10細胞激素分泌比值隨之降低;顯示四種植物多醣中,以蓮子心多醣(LPPS)最具抗發炎潛力,黑木耳多醣(TMPS)次之。
進ㄧ步以蓮子心多醣(LPPS)於動物體外和體內模式探討其對非肥胖糖尿病(non-obese diabetes, NOD)雌鼠自發第1型糖尿病之抗發炎潛力,體外模式結果顯示,LPPS添加於NOD雌鼠初代脾臟細胞中,可藉由增加抗發炎(IL-10)/促發炎(IL-6)細胞激素分泌比値,而具有抗發炎活性;體內模式結果顯示,餵食LPPS試驗飲食十五週後可顯著降低NOD雌鼠自發性脾臟發炎現象,且有劑量反應關係;顯著抑制脾臟細胞促發炎細胞激素(IL-6與TNF-α)分泌量,顯著降低促發炎(IL-6)/抗發炎(IL-10)細胞激素分泌比値;顯著降低肝臟促發炎(IL-6與TNF-α)/抗發炎(IL-10)細胞激素mRNA相對表現量的比値;顯著增加胰島細胞數量,改善其基礎胰島素分泌能力;藉由相對增加血清HDL-C,降低LDL-C與總膽固醇含量,而改善血清脂質含量;綜合體外與體內實驗結果,推測LPPS可藉由調節脾臟細胞與肝臟之促發炎/抗發炎細胞激素基因表現,同時經由保護胰島細胞與調節血清脂質,而改善第1型糖尿病之病程發展及其併發症發生。
為瞭解蓮子心多醣(LPPS)之特性,進一步分離純化LPPS,分析其特性差異,膠體過濾(gel filtration)分析結果顯示LPPS含有兩個主要成分(fraction-1, F1與fraction-2, F2),其分子量分別為> 2,000 kDa與25.7 kDa;分析LPPS中總蛋白質與總醣類組成比率,發現F1為LPPS中主要的蛋白多醣(proteopolysaccharide)成分,F2為LPPS中的醣蛋白(glycoprotein)成分。將已純化之物質(F1與F2)分別以RAW264.7巨噬細胞與初代脾臟細胞進行抗發炎功效評估,RAW264.7巨噬細胞結果顯示,在先添加樣品之預防模式下,以LPS誘導RAW264.7巨噬細胞發炎,LPPS之區分物(F1與F2)可藉由降低促發炎(IL-6)/抗發炎(IL-10)細胞激素分泌比値,具有強烈的抗發炎作用,且抗發炎功效F2優於F1;初代脾臟細胞結果顯示,LPPS之區分物(F1與F2)顯著降低促發炎(IL-1β與TNF-α)/抗發炎(IL-10)細胞激素分泌比值,抗發炎功效F2亦優於F1;綜合RAW264.7巨噬細胞與初代脾臟細胞之實驗結果,顯示F2最具抗發炎潛力,亦是LPPS中的主要抗發炎活性成分。
為瞭解蓮子心多醣及其區分物(F1與F2)抗發炎之作用機制,以初代脾臟細胞探討LPPS及其區分物可能的抗發炎機制,結果顯示,在以LPS刺激BALB/c小鼠初代脾臟細胞發炎模式與治療模式下,LPPS及其區分物(F1與F2)顯著降低脾臟細胞之類鐸接受器-2 (Toll-like receptor-2, TLR-2)或/與TLR-4 mRNA相對表現量,顯示LPPS及其區分物(F1與F2)可分別藉由降低TLR-2或/與TLR-4表現量,而抑制發炎。
綜合本論文研究結果,蓮子心多醣(LPPS)在體外與體內均具有抗發炎作用,LPPS含有兩個主要成分(F1與F2),F1為蛋白多醣成分,F2為醣蛋白成分,亦是LPPS中的主要抗發炎活性成分,LPPS及其區分物(F1與F2)可能藉由降低脾臟細胞之TLR-2或/與TLR-4表現量,而抑制發炎作用。


Polysaccharides have been reported to have different physiological functions, but their immunological regulatory effects have not been fully clarified. To compare possible immunological regulatory effects of different plant polysaccharides, lotus plumule polysaccharides (LPPS), tree mushroom polysaccharide (TMPS), white cabbage polysaccharide (WCPS) and red cabbage polysaccharide (RCPS) were extracted with hot water and then precipitated using 70% alcohol. Non-cytotoxic doses of the polysaccharides were determined and administered to mouse primary splenocytes in the absence or presence of lipopolysaccharide (LPS) to investigate effects of different plant polysaccharides on pro- and anti-inflammatory cytokine secretions. The results showed that pro-/anti-inflammatory cytokine (TNF-α/IL-10) secretion ratios were significantly decreased in dose-dependent manners by LPPS and TMPS, respectively, in the absence of LPS, suggesting that LPPS and TMPS might have anti-inflammatory potential. However, only LPPS treated in the presence of LPS significantly decreased TNF-α/IL-10 secretion ratios in a dose-dependent manner. Our findings suggest that LPPS has the strongest anti-inflammatory effect among four different plant polysaccharides selected in this study, via decreasing pro-/anti-inflammatory cytokine secretion ratios by mouse primary splenocytes. TMPS also had a mild anti-inflammatory effect.
To confirm anti-inflammatory effects of LPPS, LPPS was further studied in vitro and in vivo for immunomodulatory functions using type 1 non-obese diabetes (NOD) female mice. The results showed that LPPS may have potential anti-inflammatory activity in vitro via increasing secretion ratios of anti-/pro-inflammatory (IL-10/IL-6) cytokines by splenocytes of NOD female mice. After a 15-week feeding experiment, the results showed that LPPS significantly (P < 0.05) decreased the absolute weights of the enlarged spleens in the NOD mice in a dose-dependent manner, inhibited pro-inflammatory TNF-α and IL-6 cytokine production and decreased the secretion ratio of IL-6/IL-10 in splenocyte cultures. LPPS markedly decreased the relative expression of pro-/anti-inflammatory cytokine genes (TNF-α/IL-10 and IL-6/IL-10) in the livers of NOD mice. Furthermore, LPPS significantly (P < 0.05) increased pancreatic islet cell numbers and slightly enhanced their basal insulin secretion ability compared to the control group. LPPS administration improved serum lipid profiles in the diabetic mice, via relatively increasing serum high density lipoprotein-cholesterol, but decreasing low density lipoprotein-cholesterol and total cholesterol levels. Overall, the results suggest that LPPS supplementation may in vivo ameliorate type 1 diabetes progress and its complications through modulating pro-/anti-inflammatory cytokine gene expression in spleen and liver, protecting pancreatic islets and modulating serum lipid profiles.
In order to understand the characteristics of LPPS, LPPS was further purified and characterized. Results showed that there were two major components fraction-1 (F1) and F2 in LPPS using gel filtration analysis. The molecular weights of native F1 and F2 approximately distributed at > 2,000 kDa and 25.7 kDa, respectively. The total protein and carbohydrate constituent ratios in LPPS, F1 and F2 revealed that F1 might be a major proteopolysaccharide component and F2 was a glycoprotein constituent in LPPS. To unravel the anti-inflammatory effects of LPPS and its purified components F1 and F2, in vitro experimental models using RAW264.7 macrophages and primary splenocytes from BALB/c mice were established. The results showed that purified components, F1 and F2 from LPPS, had strong anti-inflammatory effects on LPS-induced RAW264.7 macrophages in a preventive manner via decreasing pro-/anti- inflammatory (IL-6/IL-10) cytokine secretion ratios; however F2 was superior to F1. In addition, F1 and F2 from LPPS had strong anti-inflammatory effects on primary splenocytes via decreasing pro-/anti-inflammatory (IL-1β and TNF-α/IL-10) cytokine secretion ratios; however F2 was superior to F1. Our results indicated that F2 had the most potential anti-inflammatory effect, suggesting that F2 is a major active component in LPPS.
In order to further unravel the anti-inflammatory mechanism of LPPS and its purified components F1 and F2, in vitro experimental models using primary splenocytes from BALB/c mice were performed. The results showed that purified components, F1 and F2, significantly decreased Toll-like receptor-2 (TLR-2) or/and TLR-4 mRNA relative expression levels in the splenocytes under the inflammatory and repair experiments. The results suggested that LPPS, F1 and F2 exerted their anti-inflammatory effects possibly through decreasing TLR-2 or/and TLR-4 expression levels in splenocytes.
In summary, we found LPPS had anti-inflammatory potential in vitro and in vivo. There were two major components F1 and F2 in LPPS. F1 might be a major proteopolysaccharide component in LPPS. F2 was a glycoprotein constituent in LPPS and is suggested to be a major active component for the anti-inflammatory effect. F1 and F2 from LPPS exerted their anti-inflammatory effects possibly through decreasing TLR-2 or/and TLR-4 expression levels in the splenocytes.


總目錄
摘要 i
Abstract iii
表目錄 vii
圖目錄 x
縮寫對照表 xii
緒言 1
第一章 文獻回顧 2
第一節 免疫反應介紹 2
一、 免疫系統(immune system) 2
二、 T細胞(T cell) 3
三、 細胞激素(cytokines) 5
四、 巨噬細胞(macrophages) 8
五、 類鐸接受器(Toll-like receptors, TLRs) 11
第二節 第1型糖尿病介紹 14
一、 NOD小鼠之發病過程 15
二、 胰島素 16
三、 第1型糖尿病自體免疫攻擊β細胞之可能機制 18
四、 NOD小鼠與Th1和Th2免疫反應之相關研究 21
第三節 多醣與免疫調節 23
一、 蓮子心多醣(lotus plumule polysaccharide, LPPS) 23
二、 黑木耳多醣(tree mushroom polysaccharide, TMPS) 24
三、 甘藍菜多醣(cabbage polysaccharide, CPS) 24
第四節 本論文研究動機與目的 24
第五節 本論文實驗設計與研究架構 25
第二章 不同來源多醣對初代脾臟細胞免疫反應之影響 27
第一節 前言 27
第二節 材料與方法 27
一、 多醣製備 27
二、 BALB/c雌鼠初代脾臟細胞之取得與培養 29
三、 統計分析 36
第三節 結果 37
一、 不同來源多醣之萃取率 37
二、 不同來源多醣對BALB/c雌鼠初代脾臟細胞生長之影響 37
三、 比較不同來源植物多醣對BALB/c雌鼠初代脾臟細胞分泌細胞激素之影響 40
第四節 討論 44
第五節 結論 45
第三章 建立NOD雌鼠發病評估指標與探討蓮子心多醣對不同週鹷NOD雌鼠免疫細胞之影響 46
第一節 前言 46
第二節 材料與方法 46
一、 實驗動物 46
二、 NOD與BALB/c雌鼠初代脾臟細胞之取得與培養 47
三、 口服葡萄糖耐受試驗(oral glucose tolerance test, OGTT) 48
四、 小鼠犧牲與血清之取得及分析 49
五、 肝臟脂質含量測定 54
六、 以real time polymerase chain reaction (real-time PCR)分析肝臟與腎臟促發炎與抗發炎細胞激素mRNA相對表現量 54
七、 統計分析 59
第三節 結果 60
一、 不同週齡NOD與BALB/c雌鼠基本生理狀態之差異 60
二、 蓮子心多醣對不同週齡NOD與BALB/c雌鼠初代脾臟細胞細胞激素分泌之影響 74
第四節 討論 79
第五節 結論 82
第四章 餵食蓮子心多醣對第1型非肥胖糖尿病雌鼠免疫反應之影響 83
第一節 前言 83
第二節 材料與方法 83
一、 試驗飼料配製 83
二、 實驗動物來源 84
三、 口服葡萄糖耐受試驗(oral glucose tolerance test, OGTT) 86
四、 小鼠犧牲與樣品收集 86
五、 初代胰臟胰島細胞之取得與培養 87
六、 初代脾臟細胞之取得與培養 89
七、 血清之取得與分析 89
八、 以real time polymerase chain reaction (real-time PCR)分析肝臟與腎臟促發炎與抗發炎細胞激素mRNA相對表現量 91
九、 統計分析 91
第三節 結果 92
一、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠體重變化之影響 92
二、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠初始體重、最終體重、攝食量、能量攝取、飼料效率及能量效率之影響 92
三、 餵食蓮子心多醣試驗飲食於第零、七及十三週對NOD與ICR雌鼠口服葡萄糖耐受試驗之影響 95
四、 餵食蓮子心多醣試驗飲食於第零、七及十三週對NOD與ICR雌鼠禁食血糖之影響 95
五、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠臟器絕對與相對組織重量之影響 98
六、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠脾臟細胞Th1/Th2與促發炎/抗發炎細胞激素分泌比值之影響 98
七、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠肝臟細胞激素mRNA相對表現量之影響 101
八、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠腎臟細胞激素mRNA相對表現量之影響 104
九、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠胰島細胞數量及其胰島素分泌能力之影響 104
一〇、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠禁食血清脂質含量之影響 107
一一、 餵食蓮子心多醣試驗飲食十五週對NOD與ICR雌鼠血清生化指標之影響 110
第四節 討論 112
第五節 結論 116
第五章 蓮子心多醣及其區分物對RAW264.7巨噬細胞抗發炎之影響 117
第一節 前言 117
第二節 材料與方法 117
一、 蓮子心多醣之製備與其區分物之純化 117
二、 蓮子心多醣區分物之分子量測定 118
三、 蓮子心多醣及其區分物之總蛋白質與總醣類的組成比率分析 119
四、 RAW264.7巨噬細胞培養方法 120
五、 RAW264.7巨噬細胞倍增時間試驗 121
六、 蓮子心多醣及其區分物與脂多醣對RAW264.7巨噬細胞生長之影響 122
七、 蓮子心多醣及其區分物對RAW264.7巨噬細胞細胞激素分泌之影響 123
第三節 結果 126
一、 蓮子心多醣區分物之特性 126
二、 蓮子心多醣區分物之分子量測定 126
三、 蓮子心多醣及其區分物之總蛋白質與總醣類之組成比率分析 129
四、 RAW264.7巨噬細胞倍增時間曲線 129
五、 蓮子心多醣及其區分物與脂多醣對RAW264.7巨噬細胞生長之影響 132
六、 蓮子心多醣及其區分物對RAW264.7巨噬細胞細胞激素分泌之影響 135
第四節 討論 143
第五節 結論 144
第六章 蓮子心多醣及其區分物對初代脾臟細胞抗發炎機制之研究 145
第一節 前言 145
第二節 材料與方法 145
一、 初代脾臟細胞取得與培養 145
二、 蓮子心多醣及其區分物對BALB/c雌鼠初代脾臟細胞生長之影響 145
三、 蓮子心多醣及其區分物對BALB/c雌鼠初代脾臟細胞細胞激素分泌之影響 146
四、 LPS與BALB/c雌鼠初代脾臟細胞培養不同時間對TLR-2與TLR-4 mRNA相對表現量之影響 147
五、 蓮子心多醣及其區分物(F1與F2)對BALB/c雌鼠初代脾臟細胞TLR-2與TLR-4 mRNA相對表現量之影響 149
六、 統計分析 151
第三節 結果 151
一、 蓮子心多醣及其區分物對BALB/c雌鼠初代脾臟細胞生長之影響 151
二、 蓮子心多醣及其區分物對BALB/c雌鼠初代脾臟細胞細胞激素分泌之影響 153
三、 LPS與BALB/c雌鼠初代脾臟細胞培養不同時間對TLR-2與TLR-4 mRNA相對表現量之影響 157
四、 蓮子心多醣及其區分物對BALB/c雌鼠初代脾臟細胞TLR-2與TLR-4 mRNA相對表現量之影響 159
第四節 討論 167
第五節 結論 168
第七章 總討論與總結 169
第一節 總討論 169
一、 比較不同來源多醣之免疫調節活性 169
二、 蓮子心多醣對非肥胖糖尿病雌鼠自發第1型糖尿病之抗發炎潛力 169
三、 蓮子心多醣及其區分物對RAW264.7巨噬細胞與初代脾臟細胞抗發炎功效之評估 170
四、 蓮子心多醣及其區分物(F1與F2)抗發炎之作用機制探討 170
第二節 總結 171
第八章 參考文獻 173
第九章 個人簡介與著作發表 187
一、 個人簡介 187
二、 博士班就讀期間之著作發表 188

郭素禎。2008。蓮子心抗發炎成分之研究。國立中興大學食品暨應用生物科技學系碩士論文,台中,台灣。
賴英淑。2006。蓮子心及其萃取物對免疫細胞及糖尿病誘發小鼠免疫調節功能之影響。國立中興大學食品暨應用生物科技學系碩士論文,台中,台灣。
Achoui, M., Appleton, D., Abdulla, M. A., Awang, K., Mohd, M. A., & Mustafa, M. R. (2010). In vitro and in vivo anti-inflammatory activity of 17-O-acetylacuminolide through the inhibition of cytokines, NF-kappaB translocation and IKKbeta activity. PLoS One, 5(12), e15105.
Afzali, B., Lombardi, G., Lechler, R. I., & Lord, G. M. (2007). The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol, 148(1), 32-46.
American Institute of Nutrition AIN-76 Semipurified Diet. (1977). Report of the American Institute of Nurtition ad hoc Committee on Standards for Nutritional Studies. J Nutr, 107(7), 1340-1348.
Akashi-Takamura, S., & Miyake, K. (2006). Toll-like receptors (TLRs) and immune disorders. J Infect Chemother, 12(5), 233-240.
Alanentalo, T., Hornblad, A., Mayans, S., Karin Nilsson, A., Sharpe, J., Larefalk, A., Ahlgren, U., & Holmberg, D. (2010). Quantification and three-dimensional imaging of the insulitis-induced destruction of beta-cells in murine type 1 diabetes. Diabetes, 59(7), 1756-1764.
Alexopoulou, L., Holt, A. C., Medzhitov, R., & Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413(6857), 732-738.
Aliprantis, A. O., Yang, R. B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P., & Zychlinsky, A. (1999). Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 285(5428), 736-739.
Ananthi, S., Raghavendran, H. R., Sunil, A. G., Gayathri, V., Ramakrishnan, G., & Vasanthi, H. R. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol, 48(1), 187-192.
Anderson, M. S., & Bluestone, J. A. (2005). The NOD mouse: a model of immune dysregulation. Annu Rev Immunol, 23, 447-485.
Andre, I., Gonzalez, A., Wang, B., Katz, J., Benoist, C., & Mathis, D. (1996). Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci U S A, 93(6), 2260-2263.
Antonelli, A., Ferri, C., Ferrari, S. M., Ghiri, E., Goglia, F., Pampana, A., Bruschi, F., & Fallahi, P. (2009). Serum levels of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor alpha in mixed cryoglobulinemia. Arthritis Rheum, 60(12), 3841-3847.
Aoki, C. A., Borchers, A. T., Ridgway, W. M., Keen, C. L., Ansari, A. A., & Gershwin, M. E. (2005). NOD mice and autoimmunity. Autoimmun Rev, 4(6), 373-379.
Balamurugan, A. N., Bottino, R., Giannoukakis, N., & Smetanka, C. (2006). Prospective and challenges of islet transplantation for the therapy of autoimmune diabetes. Pancreas, 32(3), 231-243.
Beg, A. A. (2002). Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol, 23(11), 509-512.
Bouhanick, B., Laboureau-Soares Barbosa, S., & Marre, M. (2000). [Hypertension and diabetes]. Arch Mal Coeur Vaiss, 93(11 Suppl), 1429-1434.
Bowman, M. A., Leiter, E. H., & Atkinson, M. A. (1994). Prevention of diabetes in the NOD mouse: implications for therapeutic intervention in human disease. Immunol Today, 15(3), 115-120.
Bruunsgaard, H., Ladelund, S., Pedersen, A. N., Schroll, M., Jorgensen, T., & Pedersen, B. K. (2003). Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clin Exp Immunol, 132(1), 24-31.
Burton, J. L., Madsen, S. A., Yao, J., Sipkovsky, S. S., & Coussens, P. M. (2001). An immunogenomics approach to understanding periparturient immunosuppression and mastitis susceptibility in dairy cows. Acta Vet Scand, 42(3), 407-424.
Cameron, M. J., Arreaza, G. A., Zucker, P., Chensue, S. W., Strieter, R. M., Chakrabarti, S., & Delovitch, T. L. (1997). IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol, 159(10), 4686-4692.
Cardell, S. L. (2006). The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in non-obese diabetic mice. Clin Exp Immunol, 143(2), 194-202.
Cardozo, A. K., Proost, P., Gysemans, C., Chen, M. C., Mathieu, C., & Eizirik, D. L. (2003). IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia, 46(2), 255-266.
Cario, E., Rosenberg, I. M., Brandwein, S. L., Beck, P. L., Reinecker, H. C., & Podolsky, D. K. (2000). Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol, 164(2), 966-972.
Chen, H., Zhang, M., Qu, Z., & Xie, B. (2008). Antioxidant activities of different fractions of polysacchatide conjugates from green tea (Camellia sinensis). Food Chemistry, 106(2), 559-563.
Chen, R., Liu, Z., Zhao, J., Chen, R., Meng, F., Zhang, M., & Ge, W. (2011). Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chemistry, 127(2), 434-400.
Chen, S. R., Xu, X. Z., Wang, Y. H., Chen, J. W., Xu, S. W., Gu, L. Q., & Liu, P. Q. (2010). Icariin derivative inhibits inflammation through suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways. Biol Pharm Bull, 33(8), 1307-1313.
Chen, W., Li, Y. M., & Yu, M. H. (2008). Astragalus polysaccharides: an effective treatment for diabetes prevention in NOD mice. Exp Clin Endocrinol Diabetes, 116(8), 468-474.
Chen, Y., Tang, J., Wang, X., Sun, F., & Liang, S. (2012). An immunostimulatory polysaccharide (SCP-IIa) from the fruit of Schisandra chinensis (Turcz.) Baill. Int J Biol Macromol, 50(3), 844-848.
Cohen, J. (2002). The immunopathogenesis of sepsis. Nature, 420(6917), 885-891.
Colucci, J. A., Arita, D. Y., Cunha, T. S., Di Marco, G. S., Vio, C. P., Pacheco-Silva, A., & Casarini, D. E. (2010). Renin-angiotensin system may trigger kidney damage in NOD mice. J Renin Angiotensin Aldosterone Syst.
Corbett, J. A., Lancaster, J. R., Jr., Sweetland, M. A., & McDaniel, M. L. (1991). Interleukin-1 beta-induced formation of EPR-detectable iron-nitrosyl complexes in islets of Langerhans. Role of nitric oxide in interleukin-1 beta-induced inhibition of insulin secretion. J Biol Chem, 266(32), 21351-21354.
Corte-Real, J., Duarte, N., Tavares, L., & Penha-Goncalves, C. (2009). Autoimmunity triggers in the NOD mouse: a role for natural auto-antibody reactivities in type 1 diabetes. Ann N Y Acad Sci, 1173, 442-448.
d''Hennezel, E., Kornete, M., & Piccirillo, C. A. (2010). IL-2 as a therapeutic target for the restoration of Foxp3+ regulatory T cell function in organ-specific autoimmunity: implications in pathophysiology and translation to human disease. J Transl Med, 8, 113.
Daneman, D. (2006). Type 1 diabetes. Lancet, 367(9513), 847-858.
Delovitch, T. L., & Singh, B. (1997). The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity, 7(6), 727-738.
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167.
Eicher, S. D., McMunn, K. A., Hammon, H. M., & Donkin, S. S. (2004). Toll-like receptors 2 and 4, and acute phase cytokine gene expression in dexamethasone and growth hormone treated dairy calves. Vet Immunol Immunopathol, 98(3-4), 115-125.
Eizirik, D. L., & Mandrup-Poulsen, T. (2001). A choice of death--the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia, 44(12), 2115-2133.
Falcone, M., & Sarvetnick, N. (1999). Cytokines that regulate autoimmune responses. Curr Opin Immunol, 11(6), 670-676.
Faure, E., Thomas, L., Xu, H., Medvedev, A., Equils, O., & Arditi, M. (2001). Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol, 166(3), 2018-2024.
Frostegard, J., Ulfgren, A. K., Nyberg, P., Hedin, U., Swedenborg, J., Andersson, U., & Hansson, G. K. (1999). Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 145(1), 33-43.
Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., & Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther, 100(2), 171-194.
Fujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Curr Drug Targets Inflamm Allergy, 4(3), 281-286.
Gaglia, J. L., Shapiro, A. M., & Weir, G. C. (2005). Islet transplantation: progress and challenge. Arch Med Res, 36(3), 273-280.
Gepts, W. (1965). Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes, 14(10), 619-633.
Gerriets, V. A., & Rathmell, J. C. (2012). Metabolic pathways in T cell fate and function. Trends Immunol, 33(4), 168-173.
Gleeson, M., McFarlin, B., & Flynn, M. (2006). Exercise and Toll-like receptors. Exerc Immunol Rev, 12, 34-53.
Gu, Y., Zhang, Y., Shi, X., Li, X., Hong, J., Chen, J., Gu, W., Lu, X., Xu, G., & Ning, G. (2010). Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta, 81(3), 766-772.
Guo, L., Xie, J., Ruan, Y., Zhou, L., Zhu, H., Yun, X., Jiang, Y., Lu, L., Chen, K., Min, Z., Wen, Y., & Gu, J. (2009). Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int Immunopharmacol, 9(10), 1175-1182.
Guzman, M., & Blazquez, C. (2004). Ketone body synthesis in the brain: possible neuroprotective effects. Prostaglandins Leukot Essent Fatty Acids, 70(3), 287-292.
Gysemans, C., Callewaert, H., Overbergh, L., & Mathieu, C. (2008). Cytokine signalling in the beta-cell: a dual role for IFNgamma. Biochem Soc Trans, 36(Pt 3), 328-333.
Gysemans, C. A., Waer, M., Valckx, D., Laureys, J. M., Mihkalsky, D., Bouillon, R., & Mathieu, C. (2000). Early graft failure of xenogeneic islets in NOD mice is accompanied by high levels of interleukin-1 and low levels of transforming growth factor-beta mRNA in the grafts. Diabetes, 49(12), 1992-1997.
Han, X. Q., Chan, B. C., Yu, H., Yang, Y. H., Hu, S. Q., Ko, C. H., Dong, C. X., Wong, C. K., Shaw, P. C., Fung, K. P., Leung, P. C., Hsiao, W. L., Tu, P. F., & Han, Q. B. (2012). Structural characterization and immuno-modulating activities of a polysaccharide from Ganoderma sinense. Int J Biol Macromol.
Hansen, M. B., Nielsen, S. E., & Berg, K. (1989). Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods, 119(2), 203-210.
Hasan, U., Chaffois, C., Gaillard, C., Saulnier, V., Merck, E., Tancredi, S., Guiet, C., Briere, F., Vlach, J., Lebecque, S., Trinchieri, G., & Bates, E. E. (2005). Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol, 174(5), 2942-2950.
Hashimoto, C., Hudson, K. L., & Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 52(2), 269-279.
Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., & Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410(6832), 1099-1103.
Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., & Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol, 3(2), 196-200.
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., & Akira, S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408(6813), 740-745.
Hoppstadter, J., Diesel, B., Eifler, L. K., Schmid, T., Brune, B., & Kiemer, P. A. (2012). Glucocorticoid-induced leucine zipper is downregulated in human alveolar macrophages upon Toll-like receptor activation. Eur J Immunol, 42(5), 1282-1293.
Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., & Akira, S. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 162(7), 3749-3752.
Hsing, C. H., Lin, M. C., Choi, P. C., Huang, W. C., Kai, J. I., Tsai, C. C., Cheng, Y. L., Hsieh, C. Y., Wang, C. Y., Chang, Y. P., Chen, Y. H., Chen, C. L., & Lin, C. F. (2011). Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKbeta/NF-kappaB Signaling. PLoS One, 6(3), e17598.
Huang, W., Gallois, Y., Bouby, N., Bruneval, P., Heudes, D., Belair, M. F., Krege, J. H., Meneton, P., Marre, M., Smithies, O., & Alhenc-Gelas, F. (2001). Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A, 98(23), 13330-13334.
Hunter, M., Wang, Y., Eubank, T., Baran, C., Nana-Sinkam, P., & Marsh, C. (2009). Survival of monocytes and macrophages and their role in health and disease. Front Biosci, 14, 4079-4102.
Ide, T., Tsutsui, H., Ohashi, N., Hayashidani, S., Suematsu, N., Tsuchihashi, M., Tamai, H., & Takeshita, A. (2002). Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol, 22(3), 438-442.
Jahromi, M. M., & Eisenbarth, G. S. (2007). Cellular and molecular pathogenesis of type 1A diabetes. Cell Mol Life Sci, 64(7-8), 865-872.
Jang, S. M., Yee, S. T., Choi, J., Choi, M. S., Do, G. M., Jeon, S. M., Yeo, J., Kim, M. J., Seo, K. I., & Lee, M. K. (2009). Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol, 9(1), 113-119.
Jara, L. J., Medina, G., Vera-Lastra, O., & Amigo, M. C. (2006). Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun Rev, 5(3), 195-201.
Jiao, J., Friedman, S. L., & Aloman, C. (2009). Hepatic fibrosis. Curr Opin Gastroenterol, 25(3), 223-229.
Jurk, M., Heil, F., Vollmer, J., Schetter, C., Krieg, A. M., Wagner, H., Lipford, G., & Bauer, S. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol, 3(6), 499.
Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124(4), 823-835.
Kawai, T., & Akira, S. (2006). TLR signaling. Cell Death Differ, 13(5), 816-825.
Kawasaki, E., Abiru, N., & Eguchi, K. (2004). Prevention of type 1 diabetes: from the view point of beta cell damage. Diabetes Res Clin Pract, 66 Suppl 1, S27-32.
Kay, A. B. (2003). Immunomodulation in asthma: mechanisms and possible pitfalls. Curr Opin Pharmacol, 3(3), 220-226.
Kim, M. S., & Polychronakos, C. (2005). Immunogenetics of type 1 diabetes. Horm Res, 64(4), 180-188.
Kitabchi, A. E., Umpierrez, G. E., Murphy, M. B., & Kreisberg, R. A. (2006). Hyperglycemic crises in adult patients with diabetes: a consensus statement from the American Diabetes Association. Diabetes Care, 29(12), 2739-2748.
Koarada, S., Wu, Y., Olshansky, G., & Ridgway, W. M. (2002). Increased nonobese diabetic Th1:Th2 (IFN-gamma:IL-4) ratio is CD4+ T cell intrinsic and independent of APC genetic background. J Immunol, 169(11), 6580-6587.
Lawton, J. A., & Ghosh, P. (2003). Novel therapeutic strategies based on toll-like receptor signaling. Curr Opin Chem Biol, 7(4), 446-451.
Leung, M. Y., Liu, C., Koon, J. C., & Fung, K. P. (2006). Polysaccharide biological response modifiers. Immunol Lett, 105(2), 101-114.
Li, H., Lu, X., Zhang, S., Lu, M., & Liu, H. (2008). Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry (Mosc), 73(6), 669-675.
Li, X., & Xu, W. (2011). TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus(pers.) Fries. J Ethnopharmacol, 135(1), 1-6.
Liang, Q., Wu, Q., Jiang, J., Duan, J., Wang, C., Smith, M. D., Lu, H., Wang, Q., Nagarkatti, P., & Fan, D. (2011). Characterization of sparstolonin B, a Chinese herb-derived compound, as a selective Toll-like receptor antagonist with potent anti-inflammatory properties. J Biol Chem, 286(30), 26470-26479.
Liao, C. H., Guo, S. J., & Lin J. Y. (2011). Characterisation of the chemical composition and in vitro anti-inflammation assessment of a novel lotus (Nelumbo nucifera Gaertn) plumule polysaccharide. Food Chemistry, 125(3), 930-935.
Lin, B. F., Chiang, B. L., & Lin, J. Y. (2005). Amaranthus spinosus water extract directly stimulates proliferation of B lymphocytes in vitro. Int Immunopharmacol, 5(4), 711-722.
Lin, J. Y., Lai, Y. S., Liu, C. J., & Wu, A. R. (2007). Effects of lotus plumule supplementation before and following systemic administration of lipopolysaccharide on the splenocyte responses of BALB/c mice. Food Chem Toxicol, 45(3), 486-493.
Lin, J. Y., & Li, C. Y. (2010). Proteinaceous constituents of red cabbage juice increase IL-10, but decrease TNF-α secretions using LPS-stimulated mouse splenocytes. J. Food Drug Anal, 18(1), 15-23.
Lin, J. Y., Li, C. Y., & Hwang, I. F. (2008). Characterization of the pigment components in red cabbage (Brassica oleracea L. var.) juice and their anti-inflammatory effects on LPS-stimulated murine splenocytes. Food Chem, 109(4), 771-781.
Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem, 101(1), 140-147.
Lin, J. Y., & Tang, C. Y. (2008). Total phenolic contents in selected fruit and vegetable juices exhibit a positive correlation with interferon-γ, interleukin-5, and interleukin-2 secretions using primary mouse splenocytes. J. Food Compos. Anal, 21(1), 45-53.
Lin, Y., Lee, H., Berg, A. H., Lisanti, M. P., Shapiro, L., & Scherer, P. E. (2000). The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem, 275(32), 24255-24263.
Liu, L., Yuan, S., Long, Y., Guo, Z., Sun, Y., Li, Y., Niu, Y., Li, C., & Mei, Q. (2009). Immunomodulation of Rheum tanguticum polysaccharide (RTP) on the immunosuppressive effects of dexamethasone (DEX) on the treatment of colitis in rats induced by 2,4,6-trinitrobenzene sulfonic acid. Int Immunopharmacol, 9(13-14), 1568-1577.
Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. Cytokine, 42(2), 145-151.
Ludvigsen, E., Stridsberg, M., Janson, E. T., & Sandler, S. (2011). Altered expression of somatostatin receptors in pancreatic islets from NOD mice cultured at different glucose concentrations in vitro and in islets transplanted to diabetic NOD mice in vivo. Exp Diabetes Res, 2011, 623472.
Luo, X., Herold, K. C., & Miller, S. D. (2010). Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity, 32(4), 488-499.
Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R., & Nagy, L. E. (2011). Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem, 286(15), 13460-13469.
Mandal, P., Pritchard, M. T., & Nagy, L. E. (2010). Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World J Gastroenterol, 16(11), 1330-1336.
Manna, P., & Sil, P. C. (2012). Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: Protective role of arjunolic acid. Biochimie, 94(3), 786-797.
Matsuguchi, T., Musikacharoen, T., Ogawa, T., & Yoshikai, Y. (2000). Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J Immunol, 165(10), 5767-5772.
Matsuguchi, T., Takagi, K., Musikacharoen, T., & Yoshikai, Y. (2000). Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood, 95(4), 1378-1385.
Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol, 1(2), 135-145.
Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388(6640), 394-397.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65(1-2), 55-63.
Ndisang, J. F. (2010). Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediators Inflamm, 2010, 359732.
Ngatu, N. R., Okajima, M. K., Yokogawa, M., Hirota, R., Eitoku, M., Muzembo, B. A., Dumavibhat, N., Takaishi, M., Sano, S., Kaneko, T., Tanaka, T., Nakamura, H., & Suganuma, N. (2012). Anti-inflammatory effects of sacran, a novel polysaccharide from Aphanothece sacrum, on 2,4,6-trinitrochlorobenzene-induced allergic dermatitis in vivo. Ann Allergy Asthma Immunol, 108(2), 117-122.
Niu, Y. C., Liu, J. C., Zhao, X. M., Su, F. Q., & Cui, H. X. (2009). Immunostimulatory activities of a low molecular weight antitumoral polysaccharide isolated from Agaricus blazei Murill (LMPAB) in Sarcoma 180 ascitic tumor-bearing mice. Pharmazie, 64(7), 472-476.
O''Shea, J. J., & Murray, P. J. (2008). Cytokine signaling modules in inflammatory responses. Immunity, 28(4), 477-487.
Okitsu, T., Bartlett, S. T., Hadley, G. A., Drachenberg, C. B., & Farney, A. C. (2001). Recurrent autoimmunity accelerates destruction of minor and major histoincompatible islet grafts in nonobese diabetic (NOD) mice. Am J Transplant, 1(2), 138-145.
Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., & Aderem, A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A, 97(25), 13766-13771.
Papa, S., Bubici, C., Zazzeroni, F., & Franzoso, G. (2009). Mechanisms of liver disease: cross-talk between the NF-kappaB and JNK pathways. Biol Chem, 390(10), 965-976.
Pasare, C., & Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science, 299(5609), 1033-1036.
Pearl-Yafe, M., Kaminitz, A., Yolcu, E. S., Yaniv, I., Stein, J., & Askenasy, N. (2007). Pancreatic islets under attack: cellular and molecular effectors. Curr Pharm Des, 13(7), 749-760.
Pennline, K. J., Roque-Gaffney, E., & Monahan, M. (1994). Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol, 71(2), 169-175.
Pereira Lde, P., da Silva, R. O., Bringel, P. H., da Silva, K. E., Assreuy, A. M., & Pereira, M. G. (2012). Polysaccharide fractions of Caesalpinia ferrea pods: potential anti-inflammatory usage. J Ethnopharmacol, 139(2), 642-648.
Peter, P., Nuttall, S. L., & Kendall, M. J. (2003). Insulin resistance--the new goal! J Clin Pharm Ther, 28(3), 167-174.
Phillips, B., Nylander, K., Harnaha, J., Machen, J., Lakomy, R., Styche, A., Gillis, K., Brown, L., Lafreniere, D., Gallo, M., Knox, J., Hogeland, K., Trucco, M., & Giannoukakis, N. (2008). A microsphere-based vaccine prevents and reverses new-onset autoimmune diabetes. Diabetes, 57(6), 1544-1555.
Pilstrom, B., Bjork, L., & Bohme, J. (1995). Demonstration of a TH1 cytokine profile in the late phase of NOD insulitis. Cytokine, 7(8), 806-814.
Pirot, P., Cardozo, A. K., & Eizirik, D. L. (2008). Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq Bras Endocrinol Metabol, 52(2), 156-165.
Pore, D., Mahata, N., Pal, A., & Chakrabarti, M. K. (2010). 34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-kappaB and p38 MAP kinase signaling. Mol Immunol, 47(9), 1739-1746.
Rabinovitch, A. (1994). Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes, 43(5), 613-621.
Rabinovitch, A., Suarez-Pinzon, W. L., Sorensen, O., & Bleackley, R. C. (1996). Inducible nitric oxide synthase (iNOS) in pancreatic islets of nonobese diabetic mice: identification of iNOS- expressing cells and relationships to cytokines expressed in the islets. Endocrinology, 137(5), 2093-2099.
Ralph, P., & Nakoinz, I. (1977). Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol, 119(3), 950-954.
Rees, D. A., & Alcolado, J. C. (2005). Animal models of diabetes mellitus. Diabet Med, 22(4), 359-370.
Riedemann, N. C., Guo, R. F., & Ward, P. A. (2003). Novel strategies for the treatment of sepsis. Nat Med, 9(5), 517-524.
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., & Bazan, J. F. (1998). A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A, 95(2), 588-593.
Rodriguez, R. M., Lopez-Vazquez, A., & Lopez-Larrea, C. (2012). Immune systems evolution. Adv Exp Med Biol, 739, 237-251.
Rothe, H., Burkart, V., Faust, A., & Kolb, H. (1996). Interleukin-12 gene expression mediates the accelerating effect of cyclophosphamide in autoimmune disease. Ann N Y Acad Sci, 795, 397-399.
Rothel, J. S., Hurst, L., Seow, H. F., Pepin, M., Berthon, P., Corner, L. A., & Wood, P. R. (1997). Analysis of ovine IL-1 beta production in vivo and in vitro by enzyme immunoassay and immunohistochemistry. Vet Immunol Immunopathol, 57(3-4), 267-278.
Saldeen, J., Lee, J. C., & Welsh, N. (2001). Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem Pharmacol, 61(12), 1561-1569.
Schromm, A. B., Brandenburg, K., Loppnow, H., Moran, A. P., Koch, M. H., Rietschel, E. T., & Seydel, U. (2000). Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur J Biochem, 267(7), 2008-2013.
Schumann, R. R., Leong, S. R., Flaggs, G. W., Gray, P. W., Wright, S. D., Mathison, J. C., Tobias, P. S., & Ulevitch, R. J. (1990). Structure and function of lipopolysaccharide binding protein. Science, 249(4975), 1429-1431.
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., & Kirschning, C. J. (1999). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem, 274(25), 17406-17409.
Sentman, M. L., Brannstrom, T., Westerlund, S., Laukkanen, M. O., Yla-Herttuala, S., Basu, S., & Marklund, S. L. (2001). Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler Thromb Vasc Biol, 21(9), 1477-1482.
Sheikh-Ali, M., Karon, B. S., Basu, A., Kudva, Y. C., Muller, L. A., Xu, J., Schwenk, W. F., & Miles, J. M. (2008). Can serum beta-hydroxybutyrate be used to diagnose diabetic ketoacidosis? Diabetes Care, 31(4), 643-647.
Shuto, T., Imasato, A., Jono, H., Sakai, A., Xu, H., Watanabe, T., Rixter, D. D., Kai, H., Andalibi, A., Linthicum, F., Guan, Y. L., Han, J., Cato, A. C., Lim, D. J., Akira, S., & Li, J. D. (2002). Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. J Biol Chem, 277(19), 17263-17270.
Sibley, R. K., Sutherland, D. E., Goetz, F., & Michael, A. F. (1985). Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab Invest, 53(2), 132-144.
Singh, B., & Rabinovitch, A. (1993). Influence of microbial agents on the development and prevention of autoimmune diabetes. Autoimmunity, 15(3), 209-213.
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem, 150(1), 76-85.
Song, G., & Du, Q. (2010). Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. J Chromatogr A, 1217(38), 5930-5934.
Sperandeo, M., D''Amico, G., Varriale, A., Sperandeo, G., Annese, M. A., & Correra, M. (1996). [Pulsed-wave color Doppler echography of the intrarenal vessels in patients with insulin-dependent diabetes mellitus and incipient nephropathy]. Arch Ital Urol Androl, 68(5 Suppl), 183-187.
Staege, H., Schaffner, A., & Schneemann, M. (2000). Human toll-like receptors 2 and 4 are targets for deactivation of mononuclear phagocytes by interleukin-4. Immunol Lett, 71(1), 1-3.
Suarez-Pinzon, W. L., Yan, Y., Power, R., Brand, S. J., & Rabinovitch, A. (2005). Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes, 54(9), 2596-2601.
Sun, H. X., Wang, H., Xu, H. S., & Ni, Y. (2009). Novel polysaccharide adjuvant from the roots of Actinidia eriantha with dual Th1 and Th2 potentiating activity. Vaccine, 27(30), 3984-3991.
Sutovska, M., Franova, S., Priseznakova, L., Nosalova, G., Togola, A., Diallo, D., Paulsen, B. S., & Capek, P. (2009). Antitussive activity of polysaccharides isolated from the Malian medicinal plants. Int J Biol Macromol, 44(3), 236-239.
Takeda, K., & Akira, S. (2003). Toll receptors and pathogen resistance. Cell Microbiol, 5(3), 143-153.
Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., & Akira, S. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol, 169(1), 10-14.
Thoma-Uszynski, S., Stenger, S., Takeuchi, O., Ochoa, M. T., Engele, M., Sieling, P. A., Barnes, P. F., Rollinghoff, M., Bolcskei, P. L., Wagner, M., Akira, S., Norgard, M. V., Belisle, J. T., Godowski, P. J., Bloom, B. R., & Modlin, R. L. (2001). Induction of direct antimicrobial activity through mammalian toll-like receptors. Science, 291(5508), 1544-1547.
Trembleau, S., Penna, G., Bosi, E., Mortara, A., Gately, M. K., & Adorini, L. (1995). Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med, 181(2), 817-821.
Triantafilou, M., & Triantafilou, K. (2002). Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol, 23(6), 301-304.
Tsui, H., Razavi, R., Chan, Y., Yantha, J., & Dosch, H. M. (2007). ''Sensing'' autoimmunity in type 1 diabetes. Trends Mol Med, 13(10), 405-413.
Turley, S., Poirot, L., Hattori, M., Benoist, C., & Mathis, D. (2003). Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med, 198(10), 1527-1537.
Tyden, G., Reinholt, F. P., Sundkvist, G., & Bolinder, J. (1996). Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreatic grafts. N Engl J Med, 335(12), 860-863.
Vidali, M., Stewart, S. F., & Albano, E. (2008). Interplay between oxidative stress and immunity in the progression of alcohol-mediated liver injury. Trends Mol Med, 14(2), 63-71.
Wagner, U., Burkhardt, E., & Failing, K. (1999). Evaluation of canine lymphocyte proliferation: comparison of three different colorimetric methods with the 3H-thymidine incorporation assay. Vet Immunol Immunopathol, 70(3-4), 151-159.
Waseem, M., Dave-Sharma, S., Kin, L. L., & Jara, F. (2012). Lipemic serum in a toddler with new-onset diabetes mellitus presenting with diabetic ketoacidosis. JOP, 13(1), 73-75.
Welsh, N., Eizirik, D. L., Bendtzen, K., & Sandler, S. (1991). Interleukin-1 beta-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology, 129(6), 3167-3173.
Wicker, L. S., Todd, J. A., & Peterson, L. B. (1995). Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol, 13, 179-200.
Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., & Mathison, J. C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249(4975), 1431-1433.
Xu, H. S., Wu, Y. W., Xu, S. F., Sun, H. X., Chen, F. Y., & Yao, L. (2009). Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha. J Ethnopharmacol, 125(2), 310-317.
Yang, R. B., Mark, M. R., Gray, A., Huang, A., Xie, M. H., Zhang, M., Goddard, A., Wood, W. I., Gurney, A. L., & Godowski, P. J. (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature, 395(6699), 284-288.
Yang, T., Jia, M., & Mei, Q. (2005). [Effect of Angelica sinensis polysaccharide on lymphocyte proliferation and cytokine induction]. Zhong Yao Cai, 28(5), 405-407.
Yarovinsky, F., Zhang, D., Andersen, J. F., Bannenberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghosh, S., & Sher, A. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science, 308(5728), 1626-1629.
Yazar, M, Degar, Y., & Yur, F. (2011). Serum cytokine and vitamin levels in experimental diabetic rats. J Anim Vet Adv, 10(5), 622-626.
Yoon, J. W., & Jun, H. S. (2005). Autoimmune destruction of pancreatic beta cells. Am J Ther, 12(6), 580-591.
Young, H. Y., Zucker, P., Flavell, R. A., Jevnikar, A. M., & Singh, B. (2004). Characterization of the role of major histocompatibility complex in type 1 diabetes recurrence after islet transplantation. Transplantation, 78(4), 509-515.
Yu, S. L., Kuan, W. P., Wong, C. K., Li, E. K., & Tam, L. S. (2012). Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clin Dev Immunol, 2012, 715190.
Yuan, C., Wang, C., Bu, Y., Cheng, L., Huang, X., Wang, Z., Yi, F., Wu, X., Liu, G., & Song, F. (2010). Antioxidative and immunoprotective effects of Pyracantha fortuneana (Maxim.) Li polysaccharides in mice. Immunol Lett.
Zhao, C., Li, M., Luo, Y., & Wu, W. (2006). Isolation and structural characterization of an immunostimulating polysaccharide from fuzi, Aconitum carmichaeli. Carbohydr Res, 341(4), 485-491.
http://www.sedico.net/english/SedicoInformationCenter/DiabetesCenter/Pancreas/insulinoma1_e.htm (搜尋日期:July 8, 2012)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊