跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王珮翰
研究生(外文):Pei-Han Wang
論文名稱:桌球比賽裁判自動系統
論文名稱(外文):An Automatic Table Tennis Match Umpiring System
指導教授:喻石生喻石生引用關係詹永寬詹永寬引用關係
指導教授(外文):Shyr-Shen YuYung-Kuan Chan
口試委員:林春宏
口試委員(外文):Chun-Hong Lin
口試日期:2014-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:60
中文關鍵詞:桌球自動評判鷹眼系統軌跡偵測線性回歸形態學
外文關鍵詞:automated referee system of table tennis gamesHawk-Eyetrajectory detectionlinear regressionmorphological
相關次數:
  • 被引用被引用:0
  • 點閱點閱:629
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
目前桌球評判方式主要是靠人眼來決定得分與否。但在擊球速度過快或裁判個人因素而會出現誤判等情形。因此,有必要建立一套完整且準確的桌球自動裁判系統。在以往的相關應用當中以網球的鷹眼系統最為著名,其方法為追蹤記錄球的路徑並顯示記錄的實際路徑的圖形圖像,也可以預測球未來的路徑。

本篇文章將此大致概念運用至桌球比賽中,利用頂帽濾波器(tophat)來銳化桌球之桌緣,並利用形態學以及連通區域標記將桌球桌切割出來。桌網切割的部分為形態學搭配線性回歸的方式得出其直線方程式。接著利用前景灰階值扣除背景灰階值來保留移動物件,搭配形態學以及區域性偵測來提高偵測桌球球心之準確率。最後再將所得之三樣特徵值(桌球桌區域、桌球落點質心、桌網直線方程式)輸入至本桌球規則系統中來有效判別得分與否。本篇文章採用 JVC-GZ-GX1攝錄影機拍攝,並與人眼判別進行下列之比對,桌面切割、偵測桌球質心、落點、評分等準確率,平均準確率分別為 0.9919、0.8488、0.8460、及 0.8322。實驗結果證明本篇文章提出的演算法對桌球偵測與桌球自動判分有一定之準確率。


The current referee methods of table tennis games rely on the human eye to determine the score. However, fast hitting and the referee’s personal factors may cause misjudgment. Therefore, it is necessary to establish a complete and accurate automated referee system of table tennis games. The most famous related application is Hawk-Eye, to visually track the trajectory of the ball and display a record of its statistically most likely path as a moving image.

This article generally applies this concept to a table tennis game. First, use tophat filter to sharpen the edge of the table tennis table. Then, we can apply Morphology and labeling to detect the table tennis table. The part of the table tennis net detection utilizes Morphology and Linear Regression to find the net’s linear equation. After that, we can deduct the background intensities from the foreground intensities to retain the moving objects. And with morphological and regional detection, we can improve the accuracy of table tennis ball center detection. Finally, import the above results which are the table tennis table, the table tennis net’s linear equation, and the table tennis ball center to the automated referee system of table tennis games in order to distinguish score or not. This article uses JVC-GZ-GX1 camcorder to shoot, and compare with the human eye by the following features, which are the accuracy of table detection, ball detection, placement detection, and score. The average accuracies are 0.9919, 0.8488, 0.8460, and 0.8322. Experimental results show that the algorithm proposed in this article has high accuracy.


摘要 ..........................i
Abstract ..........................ii
Table of Contents ..........................iii
List of Tables ..........................v
List of Figures ..........................vi
Chapter 1 Introduction ..........................1
1.1 Background ..........................1
1.2 Motivation and goal ..........................3
1.3 Environment Settings ..........................5
1.4 Organization ..........................6
Chapter 2 Related Works ..........................8
2.1Morphology ..........................8
2.1.1Erosion ..........................8
2.1.2Dilation ..........................10
2.1.3Opening and Closing ..........................11
2.2Area Filling Algorithm ..........................13
2.3Connected Component Labeling ..........................14
2.4Otsu’s Thresholding ..........................15
2.5Linear Regression ..........................17
Chapter 3 ATTMU System ..........................19
3.1 Table detection ..........................20
3.2 Net detection ..........................24
3.3 Ball detection ..........................25
3.3.1Part A-Candidate point detection ..........................26
3.3.2Part B-Local area detection ..........................30
3.3.3Placement detection ..........................33
3.4Regular system ..........................35
3.4.1Effective service judgment ..........................35
3.4.2Effective service return judgment ..........................38
3.4.3Reset serving point ..........................40
Chapter 4 Results and Discussion..........................41
4.1 Experimental evaluation methods ..........................41
4.2 The experiment results of Table Detection ..........................43
4.3 The experiment results of Net Detection ..........................44
4.4 The experiment results of Ball Detection ..........................45
4.5 The experiment result of Regular System ..........................55
4.6 The efficacy of ATTMU ..........................56
Chapter 5 Conclusions and Future Prospects ..........................57
5.1 Conclusions ..........................57
5.2 Future Prospects ..........................58
Reference ..........................59


[1] S.T. Rodrigues, J.N. Vickers & A.M Williams, “Head, eye and arm coordination in table tennis”, Journal of Sports Sciences, vol.20, 187-200, 2002
[2] X. Zhang, “Analysis of the effect of new competition rules on table tennis technique”, Journal of Anhui Sports Science, vol.01, 2002
[3] B. Zhang, W. Chen, W. Dou, Y. Zhang, L. Chen, “Content-based Table Tennis Games Highlight Detection Utilizing Audiovisual Clues, ”Image and Graphics, 2007. ICIG 2007. Fourth International Conference, vol. 22-24, pp. 833 – 838, 2007
[4] W. Chen, Y. Zhang. “Tracking Ball and Players with Applications to Highlight Ranking of Broadcasting Table Tennis Video, ”Computational Engineering in Systems Applications, IMACS Multi-conference, pp. 1896 – 1903, 2006.
[5] R.C. Gonzalez, R.E. Woods, “Digital Image Processing”, 2nd, Prentice-Hall, 2002.
[6] C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, and G. Sapiro, "A variational model for filling-in gray level and color images", Proc. Int. Conf. Computer Vision, pp.10 -16, 2001
[7] S. W. Yang, M. H. Sheu, H. H. Wu, H. E. Chien, P. K. Weng, and Y. Y. Wu,“VLSI Architecture Design for a Fast Parallel Label Assignment in Binary Image.” Circuits and Systems, IEEE International Symposium on, pp. 2393-2396, 2005.
[8] N. Otsu, “A Threshold Selection Method from Gray-level Histogram, ”IEEE Transactions on System Man Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.
[9] H. Tanaka , S. Uejima and K. Asai "Linear regression analysis with fuzzy model", IEEE Trans. Systems Man Cybernet, vol. 12, pp.903 -907, 1982
[10] T. Horiuchi and S. Hirano, “Colorization Algorithm for Grayscale Image by Propagating Seed Pixels,” in Proc. IEEE International Conference on Image Processing (ICIP), vol.1, pp. 457-460, 2003.
[11] ITU-R Rec. BT.1210-3, "Test materials to be used in subjective assessment," February 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top