跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.149) 您好!臺灣時間:2025/11/30 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅坤榮
研究生(外文):Kuen-Rong Lo
論文名稱:階層式行動通信系統之通道指派策略
論文名稱(外文):Channel Assignment Schemes for Hierarchical Cellular Systems
指導教授:張仲儒項春申
指導教授(外文):Cheng-Ju ChangC. Bernard Shung
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:111
中文關鍵詞:階層 式行動通信系統通道指派交遞率乏晰類神經乏晰呼叫允諾控制客戶滿意度
外文關鍵詞:hierarchical cellular systemchannel assignmenthandoff ratefuzzyneural fuzzycall admission controluser satisfaction index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
本論文是研究階層式行動通信系統之通道指派策略,吾人首先提出合成通道指派策略。本策略之主要目標是提高系統之通道使用率,減少呼叫之阻塞率。為達成上述目標,所提出合成通道指派策略是結合升流、降流和逆流策略。升流策略是呼叫發生在微細胞與巨細胞重疊區域時,若是微細胞已經沒有通道可以使用時,則可以將此呼叫升流到巨細胞使用它的空閒通道。降流策略是相鄰的巨細胞中的呼叫交遞到微細胞與巨細胞重疊區域時,若是巨細胞已經沒有通道可以使用時,則可以將此交遞呼叫降流到微細胞使用它的空閒通道。逆流策略是為了提高微細胞之通道使用率,可以將巨細胞中的呼叫逆流至本身所涵蓋的微細胞。
一般而言,客戶對於進行中的呼叫被中斷,其受到抱怨的程度比新呼叫被阻塞的程度高。為了減低客戶抱怨的程度,傳統式之通道指派方法是保留部份通道給優先順序較高之交遞呼叫使用。但是究竟要保留多少通道才能維持交遞呼叫的服務品質,而且通道使用率是最有效率。往往在一個負載隨機變動的系統是很困難達成的,它不是不可能做到而需要經由很複雜的系統模式與數學推導。吾人設計之乏晰通道指派控制器不僅可以達成維持交遞呼叫的服務品質保證,而且又能達成高的通道使用率。乏晰通道指派控制器之設計觀念是使用二層式乏晰邏輯控制方式,能簡化設計之複雜度,並且能解決複雜的通道指派問題。乏晰通道指派控制器已經經由系統模擬得到其結果與傳統式之通道分派方法比較,乏晰通道分派控制器的確能維持交遞呼叫的服務品質及得到較高的通道使用率。
由於未來的無線通信系統將可以提供多媒體的服務,因此系統必須具有高速率及高容量的能力。針對高速率的階層式行動通信系統,吾人提出類神經乏晰通道指派控制器,它具有類神經學習能力及吸納乏晰理論的優點。為了達成較高的通道使用率以及維持交遞呼叫的品質保證,它的之設計觀念是可以做彈性的允諾控制以及軟性的速率管理。類神經乏晰通道指派控制器之設計方法亦是使用二層式控制方式,第一層是乏晰通道選擇器,它選擇有效的系統訊息作為乏晰通道選擇器之輸入變數,然後應用最小-最大推論方式,最後決定呼叫要分派到巨細胞或微細胞。第二層是類神經乏晰通道處理器,它應用五層類神經乏晰架構並結合補強式學習方式來執行彈性的允諾控制以及軟性的速率管理。系統模擬顯示,類神經乏晰通道指派控制器可以維持交遞呼叫的品質,得到較高的通道使用率,以及高的客戶滿意指數。
In this dissertation, channel assignment schemes of hierarchical
cellular systems with overlaying macrocells and overlaid microcells
are studied. First, a combined channel assignment (CCA)
mechanism is proposed. The objective of the proposed CCA mechanism
is to reduce the new-call blocking probability, decrease forced
termination probability, and increase the channel utilization for
the whole system. The proposed CCA mechanism combines overflow,
underflow, and reversible schemes to reduce both the new-call
blocking probability and forced termination probability. Also, it
adopts the buffering scheme and considers load balancing between
macrocell and microcell to obtain a high channel utilization.
Next, a novel scheme, a fuzzy channel allocation controller
(FCAC), is proposed for hierarchical cellular systems. The
objective of the proposed FCAC scheme is to increase the channel
utilization for the whole system and to guarantee the required QoS
of handoffs as well. The FCAC mainly contains a fuzzy channel
allocation processor (FCAP) which is designed to be in a two-layer
architecture: a fuzzy admission threshold estimator in the first
layer and a fuzzy channel allocator in the second layer. The FCAP
chooses the handoff failure probability, defined as
quality-of-service (QoS) index, and the resource availability as
input linguistic variables for the fuzzy admission threshold
estimator. The Sugeno''s position-gradient type reasoning method is
applied in the fuzzy admission threshold estimator to adaptively
adjust the admission threshold for the fuzzy channel allocator.
For achieving channel allocation with flexible admission and soft
rate control, a neural fuzzy channel allocation controller
(NFCAC) is designed for multimedia services in hierarchical
cellular system. The design concept of NFCAC is to support flexible
resource allocation and soft rate control so that the high blocking
rate in a hierarchical cellular system providing multi-channel
services can be reduced. The NFCAC mainly contains a neural fuzzy
channel allocation processor (NFCAP) which is designed to be in a
two-layer architecture that consists of a fuzzy channel selector
(FCS) in the first layer and a neural fuzzy call-admission and rate
controller (NFCRC) in the second layer. FCS is a fuzzy control
logic, and it can properly determine which channel in either
macrocell or microcell to be allocated. The NFCRC is a five-layer
neural fuzzy controller with the reinforcement learning
architecture to perform the flexible admission control and soft
rate management.
2. Hierarchical Cellular Systems
3. A Combined Channel Assignment Mechanism
4. A QoS-Guaranteed Fuzzy Channel Allocation Controller
5. A Neural Fuzzy Channel Allocation Controller for Multimedia Services
6. Conclusions
Cover
Chinese Abstract
English Abstract
Acknowldegements
Contents
List of Tables
List of Figures
1 Introduction
1.1 Literature Survey
1.2 Motivation and Objective
1.3 Synopsis of Dissertation
2 Hierarchical Cellular Systems
2.1 Introduction
2.2 Structures
2.3 Handoff Prioritization
2.4 Channel Assignment Schemes
2.5 Quality of Service ( QoS )
2.6 Conclusion
3 A Combined Channel Assignment Mechanism
3.1 Introduction
3.2 System Model
3.3 Combined Channel Assignment Mechanism
3.4 Simulation Results and Discussions
3.5 Concluding Remarks
4 A QoS-Guaranteed Fuzzy Channel Allocation Controller
4.1 Introduction
4.2 Fuzzy Channel Allocation Controller ( FCAC )
4.3 Design of FCAP
4.4 Simulation Results and Discussions
4.5 Concluding Remarks
5 A Neural Fuzzy Channel Allocation Controller for Multimedia Services
5.1 Introduction
5.2 Neural Fuzzy Channel Allocation Controller ( NFCAC )
5.3 Design of NFCAP
5.4 Simulation Results and Discussions
5.5 Concluding Remarks
6 Conclusions
Bibliography
Vita
Publication List
[1] A. Iera, A. Molinaro, and S.Marano, ''Wireless broadband applications: the teleservice model and adaptive QoS provisioning," IEEE Commun. Mag., pp. 71--75, Oct.~1999.
[2] J. Zander and H. Eriksson, ''Asymptotic bounds on the performance of a class of dynamic channel assignment algorithms," IEEE J. Selected Areas in Commun. , vol.~11, no.~6, pp.~926--933, Aug.~1993.
[3] W. M. Jolley and R. E. Warfield, ''Modeling and analysis of layered cellular mobile networks," in Proc. ITC-13, 1991,
pp.~161--166.
[4] C. W. Sung and W. S. Wong, ''User speed estimation and dynamic channel allocation in hierarchical cellular systems,"
IEEE VTC''94, pp. 91--95.
[5] M. Madfors, K. Wallstedt, S. Magnusson, H. Olofsson, P. Backman, and S. Engstrom, ''High capacity with limited spectrum in cellular systems," IEEE Commun. Mag., pp. 38--45, Aug.~1997.
[6] V. R. Kolavennu and S. S. Rappaport, ''Traffic performance characterisation of a personal radiocommunication system," IEE, pt. F, vol. 133, pp. 550--561, Oct. 1986.
[7] R. Steele and M. Nofal, ''Teletraffic performance of microcellular personal communication networks," Proc. Inst. Elec. Eng., vol. 139, pp.448--461, Aug. 1992.
[8] S. A. El-Dolil, W. C. Wong, and R.~Steele, ''Teletraffic performance of highway microcells with overlay macrocell,"
IEEE J. Selected Areas Commun., vol. 7, pp. 71--78, Jan. 1989.
[9] C. L. I, L. J. Greenstein, and R. D. Gitlin, ''A microcell/macrocell cellular architecture for low- and high-mobility wireless users," IEEE J. Selected Areas Commun., vol. 11, pp. 885--891, Aug. 1993.
[10] M. Murata and E. Nakano, ''Enhancing the performance of mobile communications systems ," ICUPC''93, pp. 732--736.
[11] H. Eriksson, M. Gudmundson et al., ''Multiple access options for cellular based personal communications," IEEE VTC''93, pp.957--962.
[12] S. S. Rappaport and L. R. Hu, ''Microcellular communication systems with hierarchical microcell overlays: traffic
performance models and analysis," Proceedings of the IEEE, vol. 82, no. 9, pp. 1383--1397, Sep. 1994.
[13] R. Beraldi, S. Maramo, and C. Mastroianni, ''A reversible architecture for microcellular systems with overlaying macrocells," INFOCOM''96, pp.~51--58.
[14] K. W. Shum, and C. W. Sung, ''Fuzzy layer selection method in hierarchical cellular systems,"GLOBECOM''96, pp. 1049--1053.
[15] V. Catania, G. Ficili, S. Palazzo, and D. Panno, ''A comparative Analysis of fuzzy versus conventional policing mechanisms for ATM networks," IEEE/ACM Trans. Networking, vol. 4, no. 3 pp. 449--459, June 1996.
[16] R. G. Cheng and C. J. Chang, ''Design of a fuzzy traffic controller for ATM networks," IEEE/ACM Trans. Networking, vol. 4, no. 3 pp. 460--469, June 1996.
[17] M. Abdul-Haleem, K. F. Cheung, and J. Chuang, ''Fuzzy logic based dynamic channel assignment," ICCS 1994,
pp. 773--777.
[18] R. G. Cheng and C. J. Chang, ''Neural-network connection-admission control for ATM networks ," IEE Proc.-Commun.,} vol. 144 no. 2, pp. 93--98, Apr. 1997.
[19]R. G. Cheng and C. J. Chang,''A QoS-provisioning neural fuzzy connection admission controller for multimedia high-speed networks," IEEE/ACM Trans. Networking, vol. 7, no. 1, pp. 111--121, Feb. 1999.
[20] J. S. Kim, S. H. park, W. Doed and N. M. Nasrabadi, ''Cellular radio channel assignment using a modified Hopfield network," IEEE Trans. Veh. Technol., vol. 46, no. 4, pp. 957--967, Nov. 1997.
[21] P. H. Chan, M. Palaniswami and D. Everitt, ''Neural network-based dynamic channel assignment for cellular mobile communication systems," IEEE Trans. Veh. Technol., vol. 43, no. 2, pp. 279--288, May 1994.
[22] N. Funabiki and Y. Takefuji, ''A neural network parallel algorithm for channel assignment problems in cellular radio networks," IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 430--437, Nov. 1992.
[23] Deitmar, ''Channel assignment for cellular radio using neural networks," IEEE Trans. Veh. Technol., vol. 40, no. 1,
pp. 188--193, Feb. 1991.
[24] X. Lagrange, ''Multitier cell design," IEEE Commun. Mag., pp. 60--64, Aug. 1997.
[25] G. P. Pollini, ''Trends in handover design," IEEE Commun. Mag., pp. 82--90, Mar. 1996.
[26] O. Grimlund and M. Gudmundson, ''Handoff strategies in microcellular systems" IEEE VTC''91 , pp.505--510.
[27] A. Salmasi and K. S. Gihousen, ''On the system design aspects of CDMA applied to digital cellular and personal communication network" IEEE VTC''91 , pp.57--62.
[28] J. Shapira, ''Microcell engineering in CDMA cellular networks," IEEE Trans. Veh. Technol., vol. 43, no. 4, pp. 817--825, Feb. 1994.
[29] T. Kanai and Y. Furuya, ''A handoff control process for microcellular systems"IEEE VTC''88, pp.170--175.
[30] A. J. Ransom, ''Handoff considerations in microcellular systems planning" PIMRC''95, pp.804--808.
[31] R. Beck and H. Panzer, ''Strategies for handover and dynamic channel allocation in micro-cellular mobile radio systems" IEEE VTC''89, pp.178--185.
[32] S. Chia and R. J. Warburton, ''Handover criteria for a city microcellular radio systems" IEEE VTC''90, pp.276--281.
[33] G. Liodakis and P. Stavroulakis, ''A novel approach in handover initiation for microcellular systems" IEEE VTC''94, pp.1820--1823.
[34] M. E. Anagnostou and G. C. Manos, ''Handover related performance of mobile communication networks" IEEE VTC''94, pp.111--114.
[35] S. Chia, ''The control of handover initiation in microcells" {\em IEEE VTC''91}, pp.~531--536.
[36] N. D. Tripathi, J. H. Reed, and H. F. Vanlandingham, ''Handoff in cellular systems," IEEE Personal Commun., pp. 26--37, Dec. 1998.
[37] H. Furukawa and Y. Akaiwa, ''A microcell overlaid with umbrella cell system,"IEEE VTC''94, pp. 1455--1459.
[38] J. Worsham and J. Avery, ''A cellular band personal communication systems,"Proc. 2nd Univ Pers. Commun., 1993, pp.~254--257.
[39] K. Ivanov and G. Spring, ''Mobile speed sensitive handover in a mixed cell environment," IEEE VTC''95, pp. 892--896.
[40] J. F. Whitehead, ''Cellular spectrum efficiency via reuse planning," IEEE VTC''85, pp.~16--20.
[41] J. Naslund et al., ''An evolution of GSM," IEEE VTC''94, pp.~348--352.
[42] L. B. Milstein et al., ''On the feasibility of a CDMA overlay for personal communications networks,"
IEEE J. Selected Areas in Commun. , vol. 10, no. 4, pp. 655--668, May. 1992.
[43] D. M. Grieco, ''The capacity achievable with a broadband CDMA microcell underlay to an existing
cellular macrosystem," IEEE J. Selected Areas in Commun., vol. 12, no. 4, pp. 744--750, May. 1994.
[44] K. L. Yeung and S. Nanda, ''Channel management in microcell/macrocell cellular radio systems," IEEE Trans. Veh. Technol., vol. VT-45, no. 4, pp. 601--612, Nov. 1996.
[45] G. Senarath and D. Everitt, ''Performance of handover priority and queuing systems under different
handover request strategies for microcellular mobile communication systems," IEEE VTC''95, pp. 897--901.
[46] P. O. Gassvik, M. Cornefjord, and V. Sevensson, ''Different methods of giving priority to handoff
traffic in a mobile telephone system with directed retry,"IEEE VTC''91, pp.~549--553.
[47] W. C. Y. Lee, ''Mobile cellular telecommunications, " McGraw-Hill, 2nd ed., 1995.
[48] D. Giancristofaro, M. Ruggieri, and F. Santucci, ''Queuing of handover requests in microcellular
network architectures, " IEEE VTC''94, pp.~1846--1849.
[49] S. Tekinary and B. Jabbari, ''A measurement-based prioritization scheme for handovers in mobile
cellular networks, " IEEE J. Selected Areas in Commun., vol. 10, no. 8, pp. 1343--1350, Oct. 1992.
[50] B. Eklundh, ''Channel utilization and blocking probability in a cellular mobile telephone system
with directed retry, " IEEE Trans. Commun., vol. COM-34, pp. 329--337, Apr. 1986.
[51] B. Jabbari and W. F. Fuhrmann, ''Teletraffic modeling and analysis of flexible hierarchical cellular networks with speed sensitive handoff strategy," IEEE J. Selected Areas in Commun., vol. 15, no. 8, pp. 1539--1548, Oct. 1997.
[52] K. R. Lo, C. J. Chang, C. Chang, and B. Shung, ''A combined channel assignment strategy for hierarchical cellular systems, " ICUPC 1997, pp. 651--655, and Computer Commun., vol. 21, no. 13, pp. 1143--1152, 1998.
[53] M. Naghshineh and M. Schwartz, ''Distributed call admission control in mobile/wireless networks," IEEE J.
Selected Areas in Commun., vol. 14, no. 4, pp. 711--717, May 1996.
[54] S. Tekinay and B. Jabbari, ''Handover and channel assignment in mobile cellulars,"
IEEE Commun. Mag. , pp. 42--46, Nov. 1991.
[55] A. S. Acampora and M. aghshineh, ''An architecture and methodology for mobile-executed cell hand-off in
wireless ATM networks," IEEE J. Selected Areas in Commun., vol. 12, no. 8, pp. 1365--1375, Oct. 1994.
[56] A. S. Acampora and M. aghshineh, ''Control and quality-of-service provisioning in high-speed microcellular
networks," IEEE Personal Commun., vol. 1, no. 2, pp. 36--43, Oct. 1994.
[57] L. P. Chin and J. F. Chang, ''Performance analysis of a hierarchical cellular mobile communication,"
ICUPC''93 , pp. 128--132.
[58] T. P. Chu and S. S. Rappaport, ''Overlapping coverage and channel rearrangement in microcellular communication systems," IEE Proc. Commun., vol. 142, no.5, pp. 323--332, Oct. 1995.
[59] G. L. Choudhury and S. S. Rappaport, ''Cellular communication schemes using generalized fixed channel assignment and collision type request channels," IEEE Trans. Veh. Technol., vol. VT-31, pp. 53--65, 1982.
[60] S. S. Rappaport, ''Traffic performance of cellular communication systems with heterogeneous call and platform types," ICUPC''93 , pp. 690--695.
[61]S. S. Rappaport, ''Personal communication systems using multiple hierarchical cellular overlays,"
IEEE J. Selected Areas in Commun., vol. 13, no. 2, pp. 406--415, May 1995.
[62]S. S. Rappaport, ''Blocking, handoff and traffic performance for cellular communication systems with mixed platforms," Proc. Inst. Elec. Eng., vol. 140, pt. I, pp. 389--401, Oct. 1993.
[63] C J. Chang, T. T. Su, and Y. Y. Chiang ''Analysis of a cutoff priority cellular radio system with finite queuing and
reneging/dropping," IEEE/ACM Trans. Networking, vol. 2, no. 2 pp. 166--175, 1994.
[64] S S. Rappaport and L. R. Hu, ''Personal communication systems using multiple hierarchical cellular overlays,"
IEEE J. Selected Areas in Commun., vol. 13, no. 2, pp. 406--415, May 1995.
[65 C. Chang, C. J. Chang and K. R. Lo, ''Analysis of a hierarchical cellular system with reneging and dropping for waiting new and handoff calls,"IEEE Trans. Veh. Technol., vol. VT-48, no. 1, pp. 1080--1091, July 1999.
[66] M. Sugeno, ''Industrial Applications of Fuzzy Control," Amsterdam, The Netherlands: North-Holland, 1985.
[67] T. Munakata and Y. Jani, ''Fuzzy systems: An overview," Commun. ACM, vol. 37, no. 3 pp. 69--76, Mar. 1994.
[68] L. A Zadeh, ''Fuzzy logic, neural networks, and soft computing," Commun. ACM, vol. 37, no. 3 pp. 77--84, Mar. 1994.
[69] V. Catania, A. Puliafito, M. Russo, and L. Vita, ''A VLSI fuzzy inference processor based on a discrete analog
approach," IEEE Trans. Fuzzy Syst., vol. 2, no. 2, May 1994.
[70] H. T. Nguyen, M. Sugeno, R. Tong, and R. R. Yager, ''Theoretical aspects of fuzzy control,"
John Wiley \& SONS, Inc., 1995.
[71] Q. Hu and W. Petr, ''A predictive self-tuning fuzzy-logic feedback rate controller," submitted to
IEEE/ACM Trans. Networking for publication.
[72] M. Hellebrandt, R. Mathar, and M. Scheibenbogen, ''Estimating position and velocity of mobile in a cellular radio network, "IEEE Trans. Veh. Technol., vol. VT-46, no. 1, pp. 65--71, Feb. 1997.
[73] E. Dahlman, P. Beming, J. Knutsson, F. Ovesio, M. Persson, and C. Roobol, ''WCDMA--The radio
interface for future mobile multimedia communications," IEEE Trans. Veh. Technol., vol. VT-47, no. 4, pp. 1105--1117,
Nov. 1998.
[74] A. Samukic,''UMTS universal mobile telecommunications system: development of standards for the third generation," IEEE Trans. Veh. Technol., vol. VT-47, no. 4, pp. 1099--1104, Nov. 1998.
[75]D. Calin and D. Zeghlache, ''High speed circuit switched data over GSM: potential traffic policies," IEEE VTC''98, pp. 1274--1278.
[76]A. Capone and L. Musumeci, ''Performance evaluations of high speed circuit data services in GSM systems," IEEE VTC''97, pp. 1274--1278.
[77] K. R. Lo, C. J. Chang, C. Chang, and B. Shung, ''A QoS-guaranteed fuzzy channel allocation controller for hierarchical cellular systems," IEEE VTC''99, pp. 2428--2432, and accepted for publication in the IEEE Trans. Veh. Technol..
[78] C. T. Lin, C. S. G. Lee, ''Neural-network-based fuzzy logic control and decision system,"
IEEE Trans. Computers, vol. 40, no. 12, pp. 1320--1336, Dec. 1991.
[79] M. E. Cotter,''The Stone-Weierstrass theorem and its application to neural nets," IEEE Trans. Neural Networks, vol. 1, pp. 290--295, Dec. 1990.
[80]C. T. Lin, C. S. G. Lee, ''Reinforcement structure/parameter learning for Neural-network-based fuzzy logic control systems," IEEE Trans. Fuzzy Systems, vol. 2, no. 1, pp. 46--63, Feb. 1994.
[81] L. Taylor, R. Titmuss, and C. Lebre, ''The challenges of seamless handover in future mobile multimedia networks,"
IEEE Personal Commun., pp. 32--37, Dec. 1999.
[82] M. Gudmundson, ''Cell planning in Manhattan environments," IEEE VTC''92, pp.435--438.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top