|
Cazes, P., Chouakria, A., Diday, E. & Schektman, Y. (1997) “Extension de l'analyse en composantes principales á des données de type intervalle”, Revue de Statistique Appliquée, XIV, 3, 5-24.
Chen, P.D. (2009) “An extension of Spaghetti PCA for time dependent interval data”, master thesis, National Chengchi University, Taipei, Taiwan, R.O.C.
Diday, E. (1987) “Introduction l’approche symbolique en Analyse des Donnés”, Première Journées Symbolique-Numerique, Université de Paris IX Dauphine.
Diday, E. (2002) “An Introduction to Symbolic Data Analysis and the Sodas Software”, Journal of Symbolic Data Analysis, 0, ISSN 1723-5081.
Gioia, F. & Lauro, C.N. (2005) “Basic statistical methods for interval data”, Statistica Applicata [Italian Journal of Applied Statistics], 17, 1, 75-104.
Gioia, F. & Lauro, C.N. (2006) “Principal component analysis on interval data”, Computational Statistics, 21, 2, 343-363.
Goupil, F., Touati, M. Diday, E. & Van Der Veen. H. (2000) “Symbolic Analysis of Financial Data ”.
Irpino, A. (2006) “Spaghetti PCA analysis: An extension of principal components analysis to time dependent interval data”, Pattern Recognition Letters, 27, 504-513.
Lauro, C.N. & Palumbo, F. (1998) “New approaches to principal component analysis to interval data, International Seminar on New Techniques & Technologies for Statistics, NTTS’98, 4/6 nov. 1998, Sorrento, Italy.
Lauro, C.N. & Palumbo, F. (2000) “Principal Component Analysis of Interval Data: A Symbolic Data Analysis Approach”, Computational Statistics, 15, 1, 73-87.
Lauro, C.N. & Palumbo, F. (2003) “Some results and new perspectives in Principal Component Analysis for interval data”, 237-244 Atti del Convegno CLADAG'03 Gruppo di Classificazione della Società Italiana di Statistica.
Palumbo, F. & Lauro, C.N. (2003) “A PCA for interval valued data based on midpoints and radii”, New developments in Psychometrics, Yanai H. et al. eds., Psychometric Society, Springer-Verlag, Tokyo.
Zuccolotto, P. (2007) “Principal component of sample estimates: an approach through symbolic data analysis”, Applied & Metallurgical Statistics, 16,173-192.
|