跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧旭宏
研究生(外文):Teng, Hsu Hung
論文名稱:1.鋅與鋁的有機金屬錯合物在開環聚合反應之應用 2.結合活性自由基聚合及開環聚合以合成嵌段共聚物
論文名稱(外文):1.Application of Zn and Al NNO- tridentate complexes in Ring Opening Polymerization 2.Block Copolymers Sythesized by Ring Opening Polymerization and Living Radical Polymerzation
指導教授:彭之皓
指導教授(外文):Peng, Chi How
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:178
中文關鍵詞:開環聚合反應己內酯乳酸交酯立體選擇性活性自由基聚合反應二氯二茂鈦
外文關鍵詞:Ring-Opening polymerizationcaprolactonelactidestereoselectivityliving radical polymerizationCp2Cl2Ti
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩部分。第一部分主要是開發出對環酯類的開環聚合反應具有催化活性及立體選擇性的有機金屬錯合物。本實驗室修飾了配基上的官能基,在中心金屬附近增加具有立體阻礙的異丁基(tert-butyl),成功的提升對於乳酸交酯(rac-lactide)的催化活性,反應時間只需要5小時即可使單體轉換率(Conversion)達到99%,並且改善分子量與理論分子量的誤差,也有最高的Pr值為0.64。
第二部份中,主要是將兩種不同的聚合反應機構結合在一起,第一種為活性自由基聚合反應(Living radical polymerization),所選擇的單體為苯乙烯(Styrene),第二種為開環聚合反應(Ring-opening polymerization),使用的單體為己內酯(ε-Caprolactone),而成功的利用二氯二茂鈦(Cp2Ti Cl2)當作催化劑及對甲氧基苯甲醛當作起始劑將兩種反應機制結合,合成出聚苯乙烯及聚己內酯的嵌端共聚物。

In part 1, we have developed the complexes that can mediate the polymerization of lactone with stereoselectivity. The bulky group, tert-butyl, was including to the position close to enhance the steric effect, which increased the catalytic activity and stereoselectivity in ring opening polymerization of rac-lactide. BTPIP2-tBuZnEt led to a ring opening polymerization of rac-lactide to 99% monomer conversion in 5 hours at 30oC with PDI equal to 1.05 and Pr = 0.64.
In part 2, we synthesized the block copolymer via different mechanisms. First, the styrene was polymerized by living radical polymerization. Second, the polycaprolactone was polymerized by ring opening polymerization. We also used the Cp2Ti Cl2 as catalyst and anisaldehyde as initiator to synthesize the block copolymer of polystyrene and polycaprolactone through chain extension and one-pot recation.

摘要 I
Abstract II
謝誌 III
目錄 IV
表目錄 VII
圖目錄 VIII
式目錄 XV
第一章 緒論 1
1-1 開環聚合反應(Ring-Opening Polymerization, ROP) 2
1-2 傳統的自由基聚合反應 6
1-3 活性聚合反應 7
1-4 鈦錯合物的聚合反應 11
1-5 研究目的及動機 16
第二章 鋅與鋁的有機金屬錯合物在開環聚合反應之應用 Applied of Ring Opening Polymerization by Zn and Al complexes 17
2-1 前言 18
2-2 鋅與鋁的有機金屬錯合物的合成 19
2-3 己內酯的開環聚合反應 24
2-4 乳酸交酯的開環聚合反應 28
2-5 有機金屬錯合物與起始劑的反應 34
2-6 苯乙烯和己內酯及乳酸交酯的嵌端共聚物的合成 40
2-7 結論 44
2-8 實驗方法 45
第三章 結合活性自由基聚合及開環聚合以合成嵌段共聚物 Block Copolymers Sythesized by Ring Opening Polymerization and Living Radical Polymerzation. 60
3-1 前言 61
3-2 以苯甲醛為起始劑進行苯乙烯的聚合 62
3-3 以苯甲醛為起始劑進行環酯類的開環聚合 65
3-4 以苯甲醛為起始劑進行苯乙烯及環己酯的嵌端共聚物的合成 70
3-5 以對甲氧基苯甲醛為起始劑進行聚苯乙烯的合成 76
3-6 以苯甲醛為起始劑進行苯乙烯及己內酯的嵌端共聚物的合成 81
3-7 結論 83
3-8 實驗方法 84
第四章 附錄 87
4-1 NMR光譜儀圖譜 88
4-2 X-ray晶體數據 100
第五章 參考文獻 166


1. Carothers, W. H.; Dorough, G.; Natta, F. v., Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J. Am. Chem. Soc. 1932, 54, 761.
2. Natta, F. J. v.; Hill, J. W.; Carothers, W. H., Studies of Polymerization and Ring Formation. XXIII. 1 ε-Caprolactone and its Polymers. J. Am. Chem. Soc. 1934, 56, 455.
3. Hill, J. W., Studies on polymerization and ring formation. VI. Adipic anhydride. J. Am. Chem. Soc. 1930, 52, 4110.
4. Carothers, W. H.; Natta, F. V., Studies on polymerization and ring formation. III. Glycol esters of carbonic acid. J. Am. Chem. Soc. 1930, 52, 314.
5. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W., Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860.
6. Drumright, R. E.; Gruber, P. R.; Henton, D. E., Polylactic acid technology. Adv. Mater. 2000, 12, 1841.
7. Gross, R. A.; Kalra, B., Biodegradable polymers for the environment. Science 2002, 297, 803.
8. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045.
9. Minami, M.; Kozaki, S. US patent 2003/0023026 A1, 2003.
10. Nair, L. S.; Laurencin, C. T., Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762.
11. Middleton, J. C.; Tipton, A. J., Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335.
12. Gunatillake, P. A.; Adhikari, R., Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 2003, 5, 1.
13. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D., Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004, 104, 6147.
14. Chisholm, M. H.; Gallucci, J. C.; Quisenberry, K. T.; Zhou, Z., Complexities in the ring-opening polymerization of lactide by chiral salen aluminum initiators. Inorg. Chem. 2008, 47, 2613.
15. Bian, S.; Abbina, S.; Lu, Z.; Kolodka, E.; Du, G., Ring-Opening Polymerization of rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes. Organometallics 2014, 33, 2489.
16. Sisson, A. L.; Ekinci, D.; Lendlein, A., The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer 2013, 54, 4333.
17. Penczek, S.; Duda, A.; Kaluzynski, K.; Lapienis, G.; Nyk, A.; Szymanski, R., Thermodynamics and kinetics of ring‐opening polymerization of cyclic alkylene phosphates. Wiley Online Library: 1993; p 91.
18. Hiraguri, Y.; Endo, T., Synthesis and radical ring‐opening polymerization of 1, 2‐dicarbomethoxy‐3‐vinylcyclobutane. J. Polym. Sci. Polym. Lett. 1989, 27, 333.
19. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A., Cationic polymerization of glycidol: coexistence of the activated monomer and active chain end mechanism. Macromolecules 1994, 27, 320.
20. Yu, G. E.; Heatley, F.; Booth, C.; Blease, T. G., Anionic polymerization of propylene oxide: Isomerization of allyl ether to propenyl ether end groups. J. Polym. Sci. A Polym. Chem. 1994, 32, 1131.
21. O'Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B., Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc., Dalton Trans. 2001, 2215.
22. Ajellal, N.; Carpentier, J. F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A., Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans. 2010, 39, 8363.
23. Penczek, S.; Duda, A.; Szymanski, R., Intra‐and intermolecular chain transfer to macromolecules with chain scission. The case of cyclic esters. Macromol. Symp. 1998, 132, 441.
24. Stevens, M. P., Polymer chemistry. oxford university press New York: 1990.
25. Szwarc, M., /`Living/' Polymers. Nature 1956, 178, 1168.
26. Hong, K.; Uhrig, D.; Mays, J. W., Living anionic polymerization. Curr. Opin. Solid State Mater. Sci. 1999, 4, 531.
27. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H., Polymers with Complex Architecture by Living Anionic Polymerization. Chem. Rev. 2001, 101, 3747.
28. Aoshima, S.; Higashimura, T., Living cationic polymerization of vinyl monomers by organoaluminum halides. 3. Living polymerization of isobutyl vinyl ether by ethyldichloroaluminum in the presence of ester additives. Macromolecules 1989, 22, 1009.
29. Jordan, R. U., A., Surface initiated living cationic polymerization of 2-oxazolines. J. Amer. Chem. Soc. 1998, 120, 243.
30. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614.
31. Jakubowski, W.; Matyjaszewski, K., Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139.
32. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M., Degenerative transfer and reversible termination mechanisms for living radical polymerizations mediated by cobalt porphyrins. Macromolecules 2006, 39, 8219.
33. Debuigne, A.; Caille, J. R.; Detrembleur, C.; Jérôme, R., Effective cobalt mediation of the radical polymerization of vinyl acetate in suspension. Angew. Chem. Int. Ed. 2005, 44, 3439.
34. Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G.; Hedrick, J. L., Organocatalytic ring-opening polymerization. Chem. Rev. 2007, 107, 5813.
35. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987.
36. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust. J. Chem. 2005, 58, 379.
37. Moad, G.; Rizzardo, E., Alkoxyamine-initiated living radical polymerization: factors affecting alkoxyamine homolysis rates. Macromolecules 1995, 28, 8722.
38. Moad, G.; Rizzardo, E.; Thang, S. H., Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008, 49, 1079.
39. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721.
40. Coca, S.; Jasieczek, C. B.; Beers, K. L.; Matyjaszewski, K., Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2‐hydroxyethyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 1417.
41. Leiston-Belanger, J. M.; Penelle, J.; Russell, T. P., Synthesis and microphase separation of poly (styrene-b-acrylonitrile) prepared by sequential anionic and ATRP techniques. Macromolecules 2006, 39, 1766.
42. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules 1998, 31, 5559.
43. Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H., Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren. Angew. Chem. Int. Ed. 1955, 67, 541.
44. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G., Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 1955, 77, 1708.
45. Kashiwa, N.; Tsutsui, T., Ethylene polymerization by supported vanadium catalyst. effect of carrier on activity and relationship between concentration of v (iii) and activity. Makromol. Chem., Rapid Commun. 1983, 4, 491.
46. Qi, M.; Zhang, B.; Fu, Z.; Xu, J.; Fan, Z., Millimeter‐size polyethylene hollow spheres synthesized with MgCl2‐supported Ziegler‐Natta catalyst. Journal of Applied Polymer Science 2016, 133.
47. Luo, Z.; Zheng, T.; Li, H.; Zhou, Q.; Wang, A.; Zhang, L.; Hu, Y., A Submicron Spherical Polypropylene Prepared by Heterogeneous Ziegler–Natta Catalyst. Industrial & Engineering Chemistry Research 2015, 54, 11247.
48. Asandei, A. D.; Moran, I. W., TiCp2Cl-catalyzed living radical polymerization of styrene initiated by oxirane radical ring opening. J. Am. Chem. Soc. 2004, 126, 15932.
49. RajanBabu, T.; Nugent, W. A.; Beattie, M. S., Free radical-mediated reduction and deoxygenation of epoxides. J. Am. Chem. Soc. 1990, 112, 6408.
50. Asandei, A. D.; Chen, Y.; Adebolu, O. I.; Simpson, C. P., Living ring‐opening polymerization of ϵ‐caprolactone with Ti alkoxides derived from the Cp2TiCl‐catalyzed SET reduction of aldehydes. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2869.
51. Asandei, A. D.; Saha, G., Living Ring‐Opening Polymerization of Cyclic Esters with Epoxide‐Derived Titanium Alkoxides. Macromol. Rapid Commun. 2005, 26, 626.
52. Asandei, A. D.; Moran, I. W., The ligand effect in Ti‐mediated living radical styrene polymerizations initiated by epoxide radical ring opening. 2. Scorpionate and half‐sandwich LTiCl3 complexes. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6039.
53. Asandei, A. D.; Moran, I. W.; Saha, G.; Chen, Y., Titanium‐mediated living radical styrene polymerizations. VI. Cp2TiCl‐catalyzed initiation by epoxide radical ring opening: Effect of the reducing agents, temperature, and titanium/epoxide and titanium/zinc ratios. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2156.
54. Asandei, A. D.; Simpson, C. P., Cp2TiCl-catalyzed synthesis of styrene/isoprene copolymers by controlled radical polymerization. Polym. Prepr. Am. Chem. Soc 2008, 49, 75.
55. Labet, M.; Thielemans, W., Synthesis of polycaprolactone: a review. Chemical Society Reviews 2009, 38, 3484.
56. Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A., Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Transactions 2010, 39, 8363.
57. Auras, R.; Harte, B.; Selke, S., An overview of polylactides as packaging materials. Macromolecular bioscience 2004, 4, 835.
58. Hubbell, J. A.; Langer, R., Tissue engineering. Chemical and Engineering News 1995, 73, 42.
59. Gao, B.; Li, D.; Li, Y.; Duan, Q.; Duan, R.; Pang, X., Ring-opening polymerization of lactide using chiral salen aluminum complexes as initiators: high productivity and stereoselectivity. New J. Chem. 2015, 39, 4670.
60. Wen, Z.; Li, D.; Qi, J.; Chen, X.; Jiang, Y.; Chen, L.; Gao, B.; Cui, Y.; Duan, Q., Effect of the phenyl ring substituent on stereoselectivity in the ring-opening polymerization of the rac-lactide initiated by salen aluminum complexes. Colloid and Polymer Science 2015, 293, 3449.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 含NNO三牙Schiff-Base之鋅和鎂錯化合物的合成及結構鑑定:乳酸交酯開環聚合反應的良好催化劑
2. 吡唑啉酮及希夫鹼三牙配位基鈣錯合物之製備及其在乳酸交酯開環聚合反應上之應用
3. 含呃唑啉苯甲脒基鈣、鎂與鋅金屬錯合物在乳酸交酯和環己內酯開環聚合應用上的比較
4. 含胺基苯並三唑苯酚氧基之新穎銅與鈀金屬錯合物合成、結構鑑定及催化應用
5. 合成與鑑定具NNO-三牙配位基之鋁錯合物及其在左旋乳酸交酯和環己內酯開環聚合反應上之研究
6. 新穎胺基-亞胺基鎂與鋅錯合物之合成、鑑定及催化開環聚合反應的研究
7. 有機鋁化物之胺陰離子-胺基雙牙配位基的電子效應及其催化環己內酯開環聚合反應的研究
8. 含NNO三牙配位基鎂與鋅錯合物之合成、結構解析及催化研究:乳酸交酯開環聚合反應
9. 合成與鑑定具NNO三牙配位基之鎂和鋅烷氧錯化合物及其在乳酸交酯開環聚合反應之探討
10. 含O,O,O-及N,N,N-三牙配位基之金屬錯合物之合成、結構解析及其在左旋乳酸交酯與環己內酯開環聚合反應之應用
11. 含N,N,O-三牙配位基之鋅與鎂金屬錯合物應用在乳酸交酯開環聚合反應上之研究
12. 胺苯酚基鋁、鋰金屬錯化合物在環酯類開環聚合反應上之運用
13. 鋅、鎂烯胺酮錯合物的合成、結構解析及其在乳酸交酯開環聚合反應的應用
14. 含雙氧配位基EDBP之鋰、鈉、鎂及鋅化合物之合成、鑑定及其於開環聚合與陰離子聚合反應之催化研究
15. 鋅錯化合物的合成及結構解析:環己內酯與乳酸交酯開環聚合反應的良好催化劑。
 
無相關期刊