跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/19 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉日翔
研究生(外文):Jih-Hsiang Yeh
論文名稱:數位化乳房X光攝影之劑量評估
論文名稱(外文):Dose estimation of digital mammography system
指導教授:陳為立官偉鵬
指導教授(外文):Wei-Li ChenWei-Peng Kuan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
中文關鍵詞:數位化乳房X光攝影平均乳腺劑量
外文關鍵詞:digital mammographymean glandular dose
相關次數:
  • 被引用被引用:4
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對數位化乳房X光攝影系統進行劑量評估,利用美國放射線醫學會之乳房攝影假體,測量不同照射條件下的輻射劑量,與影像品質的變化,推估出最適於4.5公分厚假體的攝影條件為30 kVp、47.7 mAs。在此攝影條件下之平均乳腺劑量為1.40 mGy,有效劑量為0.07 mSv,而此有效劑量並未高於大多數常見放射線檢查項目,且其值亦遠低於年平均天然游離輻射劑量(約為其1/34),因此民眾可安心接受乳房攝影檢查。
臨床上執行乳房攝影之優先考慮因素為影像品質,本論文亦針對此進行實驗。實驗結果發現,與傳統乳房X光攝影系統相較之下,數位乳房X光攝影可以較低之平均乳腺劑量,而得到較佳的影像品質,因此其確實可達到降低病患輻射劑量的效果。
本論文使用游離腔、熱發光劑量計、以及照射發光玻璃劑量計做為輻射劑量測量工具,並比較各種劑量計之測量結果。使用照射發光玻璃劑量計測量時,由於其密度較大,故於影像上呈現高光密度,而有可能會擋住病灶,因此不適合放置於假體或乳房表面進行劑量測量。實驗結果發現,熱發光劑量計及照射發光玻璃劑量計的測量值除了24 kVp時有低估之現象外,於其他管電壓峰值時的測量結果皆與游離腔相當符合,熱發光劑量計之測量結果與游離腔之差異皆在6%以內,而照射發光玻璃劑量計之測量結果與游離腔之差異皆小於5%。
The purpose of this study was to estimate the radiation dose of the digital mammography system. The radiation dose and image quality of different exposure setting were estimated with the standard American College of Radiology (ACR) phantom. The results showed that the most suitable exposure setting was 30 kVp and 47.7 mAs. The mean glandular dose at 30 kVp and 47.7 mAs was 1.40 mGy, and the effective dose was 0.07 mSv. The effective dose of 0.07 mSv was about 1/34 of the natural background radiation exposure per year.
In this study, a comparison in mean glandular dose of digital mammography system to that of traditional mammography system was conducted. The results showed that the digital mammography system can provide better image quality with lower mean glandular dose.
Measurement of mean glandular dose in this study was proceed with ionization chamber, thermoluminescent dosimeters (TLDs), and radiophotoluminescent glass dosimeters (RPLGDs). Because of the high density of RPLGDs, the measurement of mean glandular dose with RPLGDs placed on the surface of the phantom was not adaptable. The experimental results indicated that the mean glandular dose measured by TLDs and RPLGDs was comparable to ionization chamber, expect for the tube voltage of 24 kVp. The difference between TLDs and ionization chamber was within 6%, and the difference between RPLGDs and ionization chamber was within 5%.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 目的 5
1.3 論文架構 6
第二章 理論基礎 7
2.1 輻射與物質的作用 7
2.1.1 光子與物質的作用 7
2.1.2 帶電粒子與物質的作用 11
2.2 劑量量測工具 14
2.2.1 游離腔 14
2.2.2 熱發光劑量計 14
2.2.3 照射發光玻璃劑量計 17
2.3 乳房X光攝影 22
2.3.1 乳房X光攝影簡介 22
2.3.2 數位化乳房X光攝影簡介 24
第三章 材料與方法 28
3.1 實驗設備 28
3.1.1 游離腔 28
3.1.2 熱發光劑量計與計讀系統 30
3.1.3 照射發光玻璃劑量計與計讀系統 32
3.1.4 乳房X光攝影系統 35
3.1.5 美國放射線醫學會乳房攝影假體 37
3.2 實驗方法 39
3.2.1 熱發光劑量計之篩選 39
3.2.2 照射發光玻璃劑量計之篩選 41
3.2.3 半值層測量 43
3.2.4 輻射劑量測量 46
第四章 結果與討論 53
4.1 劑量計篩選 53
4.2 半值層測量 58
4.3 輻射劑量測量 59
第五章 結論 76
參考文獻 78
附錄 80
附錄A. 回散射因子 80
附錄B. 熱發光劑量計測量值之修正 82
附錄C. 照射發光玻璃劑量計測量值之修正 83
1.http://crs.cph.ntu.edu.tw/crs_c/annual.html 行政院衛生署癌症登記網.
2.Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Annals of the ICRP 21(1-3).
3.American Collage of Radiology. Mammography Quality Control Manual, 1999.
4.D. R. Dance, “Breast dosimetry,” Applied Radiation and Isotopes 50, pp. 185-203, 1999.
5.M. Chevalier, P. Morán, J. I. Ten, J. M. Fernández Soto, T. Cepeda, and E. Vañó, “Patient dose in digital mammography,” Med. Phys. 31 (9), pp.2471-2479, Sep 2004.
6.J. J. Tomon, T. E. Johnson, K. N. Swenson, and D. A. Schauer, “Applicability of ACR breast dosimetry methodology to a digital mammography system,” Med. Phys. 33 (3), pp.799-807, Mar 2006.
7.D. R. Dance, “Monte Carlo calculation of conversion factors for the estimation of mean glandular breast dose,” Phys. Med. Biol. 35 (9), pp. 1211-1219, Mar 1990.
8.D. R. Dance, C. L. Skinner, K. C. Young, J. R. Beckett, and C. J. Kotre, “Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol,” Phys. Med. Biol. 45 (2000), pp.3225-3240, Jun 2000.
9.R. Klein, H. Aichinger, J. Dierker, J. T. M. Jansen, S. Joite-Barfuß, M. Säbel, R. Schulz-Wendtland, and J. Zoetelief, “Determination of average glandular dose with modern mammography units for two large groups of patients,” Phys. Med. Biol. 42 (1997), pp.651–671. Nov 1996.
10.N. Jamal, K-H NG, and D. Mclean, “A study of mean glandular dose during diagnostic mammography in Malaysia and some of the factors affecting it,” The British Journal of Radiology, 76 (2003), pp.238-245, Apr 2003.
11.S. C. Bushong, “Radiologic science for technologists,” seventh edition, Mosby, Inc., pp. 306-318, 2001.
12.E. D. Pisano, and M. J. Yaffe, “Digital mammography,” Radiology 234 (2), pp.353-362, Feb 2005.
13.A. P. Smith, “Fundamentals of Digital Mommography: Physics, Technology and Practical Considerations,” Hologic, Mar 2005.
14.F. H. Attix, “Introduction to radiological physics and radiation dosimetry,” New York: Wiley & Sons, 1986.
15.F. M. Khan, ”The Physics of Radiation Therapy, ” Maryland: Williams & Wikins, 1992.

16.許彬杰、翁寶山, “實用固體熱發光劑量測定術”, pp.1-47, 合記圖書出版社, 2002.
17.S. M. Hsu, S. H. Yeh, M. S. Lin, W. L. Chen, “A Comparative Study on Characteristics of Radiation Detectors Between Radiophotoluminescent Glass Dosimeters and Thermoluminescent Dosimeters,” Chinese J Radiology 29, pp.323-330, Dec 2004.
18.T. S. Curry, J. E. Dowedy, R. C. Murry, “Christensen’s physics of diagnostic radiology,” fourth edition, Wolters Kluwer, Inc., pp. 34, pp. 92, 1990.
19.“Saint-Gobain/Norton Industrial Ceramics Corporation, HARSHAW/BICRON Thermoluminescence Dosimetry (TLD) Materials and Assemblies.
20.“System UL-320 TLD Reader Instruction Manual REXON TLD SYSTEM. INC..”
21.John Robert Cinningham, “The Physics of Radiology,” ISBN: 0-398-04669-7.
22.Hologic, 接收測試暨醫學物理師品管檢測.
23.W. Huda, A. M. Sajewicz, K. M. Ogden, D. R. Dance, “Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system,” Med. Phys. 30 (3), pp.442-448, Mar 2003.
24.J. R. Gentry, L. A. DeWerd, “TLD measurements of in vivo mammographic exposures and the calculated mean glandular dose across the United States,” Med. Phys. 23 (6), pp.899-903, Jun 1996.
25.H. M. Warren-Forward, L. Duggan, “Towards in vivo TLD dosimetry in mammography,” The British Journal of Radiology 77, pp.426-432, May 2004.
26.G. L. Dubuque, R. K. Cacak, W. R. Hendee, “Backscatter factors in the mammographic energy range,” Med. Phys. 4 (5), pp.397-399, Sep./Oct. 1977.
27.H. P. Chan, K. Doi, “Monte Carlo simulation of bactscatter factors in mammography,” Radiology 139, pp.195-199, Apr. 1981.
28.葉恬綺, “銥-192射源插種治療攝護腺癌之劑量分布,” pp.68-73, 國立陽明大學放射醫學學研究所, 2006.
29.http://www.radiologyinfo.org Radiological Society of North America (RSNA).
30.D. Brenner and W. Huda, “Effective dose: A useful concept in diagnostic radiology?” Radiation protection Dosimetry 128 (4), pp.503-508, Mar. 2008.
31.游離輻射防護安全標準, 行政院原子能委員會, Dec. 2005
32.http://physics.nist.gov/PhysRefDat/Xcom/Text/XCOM.html
National Institute of Standards and Technology (NIST), 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊