跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉天傑
研究生(外文):Tien-Chieh Yeh
論文名稱:外力式長週期與傳統式短週期光纖光柵的特性分析及實驗量測
論文名稱(外文):Characteristic Analyses and Experimental Measurements on Traditional Fiber Bragg Grating and Corrugated Long Period Fiber Grating
指導教授:馬劍清
指導教授(外文):Chien-Ching Ma
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:129
中文關鍵詞:光纖光柵光纖感測器可調式濾波器積層式壓電致動器鋸齒狀結構
外文關鍵詞:fiber gratingsfiber sensorstunable filtermultilayer piezoelectric actuatorcorrugated structureFBG
相關次數:
  • 被引用被引用:28
  • 點閱點閱:940
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:2
在本研究中我們由理論分析及實驗量測兩方面針對兩種不同形式的光纖光柵在受到外力及溫度的擾動下對光傳播行為的改變來加以探討,其中包含了採相位光罩法以紫外雷射光配合光纖感光性製作的傳統式短週期光纖光柵和藉由類似半導體製程之蝕刻技術製作的外力式長週期光纖光柵。
本文中對於已有較完備理論的傳統式短週期光纖光柵,主要是以實驗來驗證理論之分析同時探討其作為高靈敏度感測器的能力與限制,另外更嘗試結合積層式壓電致動器作為可調式的光通訊元件以應用於未來分波多工之光通訊系統中。
在外力式長週期光纖光柵方面,由於其屬於一新的光纖光柵形成機制在理論及實驗兩方面都未臻成熟,本文中由製作乃至於實驗量測的結果,對於其特性和設計等方面皆有詳細分析及說明,除此之外文中同時研究以光纖模態耦合理論、光彈理論配合有限元素分析的方式來對其特性進行分析。
By characterizing the variations of optic propagation behavior from the perturbation of applied mechanic forces and the temperature difference through theoretical analyses and experimental results, two different types of fiber gratings, including the traditional fiber Bragg grating that manufactured by using phase mask method and the corrugated long period fiber grating that made by techniques similar to the lithography procedure of semiconductor manufacturing are analyzed in this research.
For the traditional fiber Bragg grating that already has well-developed theories, we discuss the ability and limitation for use this device as high sensitive sensors. Furthermore, we also combine the traditional fiber Bragg grating with multilayer piezoelectric actuator to use as the tunable device for the dense wavelength division multiplexed system.
Applying loads on corrugated long period fiber grating is a new way for forming fiber gratings. In this thesis, we illustrate the characteristics and design parameters by the experimental results. We also develop a method using conventional coupled-mode theory, photo-elastic theory and finite element analysis to explain and analyze experimental results.
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 內容簡介 6
第二章 光纖及光纖光柵的基本原理 8
2-1 光纖的構造與分類 8
2-1-1 光纖的基本構造 8
2-1-2 光纖的分類 9
2-1-3 本文中使用之光纖 13
2-2 基本光學理論 15
2-2-1 基本光纖光學 16
2-2-2 光纖光柵的原理 20
2-2-3 光纖光柵的分類 22
2-3 光纖光柵的製作 26
2-3-1 傳統式光纖光柵的製作 26
2-3-2 外力式光纖光柵的製作 31
2-4 光彈原理與熱光原理 36
2-4-1 光彈原理 36
2-4-2 熱光原理 40
第三章 傳統式短週期光纖光柵 41
3-1 基本特性 41
3-1-1 運作特性及設計參數 41
3-1-2 等效折射率及場形分佈 43
3-2 共振波長飄移理論 44
3-2-1 共振波長飄移原理 44
3-2-2 受平面應力下之情況 48
3-2-3 受單軸向應力下之情況 49
3-3 實驗架設及相關元件 50
3-3-1 實驗架設 50
3-3-2 積層式壓電致動器 54
3-3-2 雷射都卜勒振動儀 58
3-4 實驗結果、對照與討論 61
3-4-1 基本特性實驗 61
3-4-2 動態量測之實驗 64
3-4-3 結合積層式壓電致動器之特性 68
3-4-4 結合積層式壓電致動器之應用 74
第四章 外力式長週期光纖光柵 79
4-1 基本特性 79
4-1-1 運作特性及設計參數 79
4-1-2 等效折射率及場形分佈 81
4-2 特性分析之理論基礎 82
4-2-1 模態耦合理論 82
4-2-2 外力式長週期光纖光柵下之情況 85
4-2-3 特性分析方式 87
4-3 實驗架設與有限元素分析模型 89
4-3-1 實驗架設 89
4-3-2 有限元素分析模型 91
4-4 實驗結果、對照與討論 95
4-4-1 受拉伸下的情況 96
4-4-2 受扭轉下的情況 102
4-4-3 溫度變化下的情況 109
4-4-4 設計與應用 110
第五章 結論與展望 113
5-1 本文初步成果 113
5-2 未來展望 114
參考文獻 116
附錄 122
I-1 實驗用色散偏移光纖特性 122
I-2 實驗用積層式壓電致動器特性 125
[1] K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki, "Photosensitivity in Optical Fiber Waveguides: Application to Reflection Fiber Fabrication," Applied Physics Letters, 32(10), 647-649 (1978)
[2] G. Meltz, W. W. Money and W. H. Glem, "Formation of Bragg Gratings in Optical fibres by a Transverse Holographic Method," Optics Letters, 14(15), 823-825 (1989)
[3] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, "Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask," Applied Physics Letters, 62(10), 1035-1037 (1993)
[4] D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-Fiber Gratings Using a Diffractive Optical Element," Electronics Letters, 29(6), 566-568 (1993)
[5] I. Bennion, J. A. R. Williams, L. Zhang, S. K. and N. J. Doran, "Tutorial Review, UV-Written in-Fiber Bragg Gratings," Optics Quantum Electronics, 28(2), 93-135 (1996)
[6] K. O. Hill and G. Meltz "Fiber Bragg Gratings Technology Fundamentals and Overview," Journal of Lightwave Technology, 15(8), 1263-1276 (1997)
[7] Raman Kashyap, Fiber Bragg Gratings, Academic Press, San Diego (1999)
[8] T. Erdogan, "Fiber Grating Spectra," Journal of Lightwave Technology, 15(8), 1277-1294 (1997)
[9] T. Erdogan, "Cladding-mode Resonances in Short and Long Period Fiber Grating Filters," Journal of Optical Society of America, 14(8), 1760-1773 (1997)
[10] J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York (1957)
[11] A. Berthold and R. Dändliker, "Determination of the Individual Strain-Optic Coefficients in Single-Mode Optical Fibers," Journal of Lightwave Technology, 6(1), 17-20 (1988)
[12] S. Takahashi and S. Shibata, "Thermal Variation of Attenuation for Optical Fibers," Journal of Non-Crystalline Solids, 30(3), 359-370 (1979)
[13] Eric Udd, Fiber Optic Sensors: an Introduction for Engineers and Scientist, John Wiley & Sons, New York (1991)
[14] Eric Udd, Fiber Optic Smart Structure, John Wiley & Sons, New York (1995)
[15] K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Advanced Applications — Bragg Gratings and Distributed Sensors, Kluwer Academic, Boston (2000)
[16] Y. J. Rao, "In-Fiber Bragg Grating Sensors," Measurement Science and Technology, 8, 355-375 (1997)
[17] Y. J. Rao, "Recent Progress in Applications of in-Fiber Bragg Grating Sensors," Optics and Lasers in Engineering, 31, 297-324 (1999)
[18] X. Tao, L. Tang, W. C. Du and C. L. Choy, "Internal Strain Measurement by Fiber Bragg Grating Sensors in Textile Composites," Composites Science and Technology, 60, 657-669 (2000)
[19] G. A. Ball and W. W. Morey, "Continuously Tunable Single-Mode Erbium Fiber Laser," Optics Letters, 17(6), 420-422 (1992)
[20] G. A. Ball and W. W. Morey, "Compression Tuned Single Frequency Bragg Grating Fiber Laser," Optics Letters, 17(6), 420-422 (1992)
[21] S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi and J. Jeong, "Channel Switching Active Add/Drop Multiplexer with Tunable Gratings," Electronics Letters, 34(1), 104-105 (1998)
[22] T. Inui, T. Komukai and M. Nakazawa, "Highly Efficient Tunable Fiber Bragg Grating Filters Using Multilayer Piezoelectric Transducers," Optics Commmunications, 190, 1-4 (2001)
[23] J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani and T. A. Strasser, "Distributed on-Fiber Thin Film Heaters for Bragg Gratings with Adjustable Chirp," Applied Physics Letters, 74(21), 3131-3133 (1999)
[24] H. Mavoori, S. Jin, R. P. Espindola and T. A. Strasser, "Enhanced Thermal and Magnetic Actuations for Broad-Range Tuning of Fiber Bragg Grating-Based Reconfigurable Add/Drop Devices," Optics Letters, 24(11), 714-716 (1999)
[25] G. W. Yoffe, P. A Krug, F. Ouellette and D. A. Thorncraft, "Passive Temperature-Compensation Package for Optical Fiber Gratings," Applied Optics, 34(30), 6859-6861 (1995)
[26] T. Iwashima, A. Inoue, M. Shigematsu M. Nishimura and Y. Hattori, "Temperature Compensation Technique for Fiber Bragg Gratings Using Liquid Crystalline Polymer Tubes," Electronics Letters, 33(5), 417-419 (1997)
[27] K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson and I. Skinner, "Efficient Mode Conversion in Telecommunication Fiber Using Externally Written Gratings," Electronics Letters, 26(6), 1270-1272 (1990)
[28] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler and A. M. Vengsarkar, "Long-Period Fiber Grating Fabrication with Focused CO2 Laser Pulses," Electronics Letters, 34(3), 302-303 (1998)
[29] Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky and K. Hirao, "Fabrication of Long-Period Fiber Gratings by Focused Irradiation of Infrared Femtosecond Laser Pulses," Optics Letters, 24(10), 646-648 (1999)
[30] M. L. von Bibra, A. Roberts and J. Canning, "Fabrication of Long-Period Fiber Gratings by Use of Focused Ion-Beam Irradiation," Optics Letters, 26(11), 765-767 (1999)
[31] M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Berbner and S. Roorda, "Ion-Implantation-Induced Densification in Silica-Based Glass for Fabrication of Optical Fiber Gratings" Journal of Applied Physics, 88(10), 5534-5537 (2000)
[32] G. Rego, O. Okhotnikov, E. Dianov and V. Sulimov, "High Temperature Stability of Long-Period Fiber Gratings Produced Using an Electric Arc" Journal of Lightwave Technology, 19(10), 1574-1579 (2001)
[33] I. K. Hwang, S. H. Yun and B. Y. Kim, "Long-period Fiber Gratings Based on Periodic Microbends" Optics Letters, 24(18), 1263-1265 (1999)
[34] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter and T. A. Strasser, "Grating Resonance in Air-Silica Microstructured Optical Fibers" Optics Letters, 24(21), 1460-1462 (1999)
[35] C. Y. Lin and L. A. Wang, "Loss Tunable Long Period Fibre Grating Made from Etched Corrugation Structure," Electronics Letters, 35(21), 1872-1873 (1999)
[36] C. Y. Lin, G. W. Chern and L. A. Wang, "Periodical Corrugated Structure for Forming Sampled Fiber Bragg Grating and Long-Period Fiber Grating with Tunable Coupling Strength," Journal of Lightwave Technology, 19(8), 1212-1220 (2001)
[37] C. Y. Lin and L. A. Wang, "A Wavelength and Loss Tunable Band-Rejection Filter Based on Corrugated Long-Period Fiber Grating," IEEE Photonics Technology Letters, 13(4), 332-334 (2001)
[38] C. Y. Lin, L. A. Wang and G. W. Chern, "Corrugated Long-Period Fiber Gratings as Strain, Torsion, and Bending Sensors," Journal of Lightwave Technology, 19(8), 1159-1168 (2001)
[39] G. W. Chern, L. A. Wang and C. Y. Lin, "Transfer-Matrix Approach Based on Modal Analysis for Modeling Corrugated Long-Period Fiber Gratings," Applied Optics, 40(25), 4476-4486 (2001)
[40] L. A. Wang, C. Y. Lin and G. W. Chern, "A Torsion Sensor Made of a Corrugated Long Period Fibre Grating," Measurement Science and Technology, 12, 793-799 (2001)
[41] M. Vaziri and C. C. Chen, "Etched Fiber as Strain Gauge," Journal of Lightwave Technology, 10(6), 836-841 (1992)
[42] M. Vaziri and C. C. Chen, "An Etched Two-Mode Fiber Modal Coupling Element," Journal of Lightwave Technology, 15(3), 474-481 (1997)
[43] 許招墉,光電工學概論,全華,79年
[44] 吳耀東,光纖原理與應用,全華,86年
[45] Bahaa E. A. Saleh, and Malvin Carl Teich, Fundamentals of photonics, John Wiley & Sons, New York (1991)
[46] 吳朗,電子陶瓷:壓電陶瓷,全欣,83年
[47] Takuro Ikuro, Fundamentals of piezoelectricity, Oxford University Press, New York (1996)
[48] 吳錦源、李世光,"新型雷射都卜勒振動/干涉儀於微光機電產業之應用",光訊,第76期,1-6,88年
[49] 鄭志丕,長週期光纖光柵之波長與能量受外力影響之研究,國立台灣大學機械工程研究所碩士論文,90年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top