|
[1] M. Murad and J. Cushman A multiscale theory of swelling porous media,II:Dial porosity models for consolidation of clay incorporating Physiochemical effects, Preprint #287, Center for Applied Mathematics, Purdue University, August 1996. [2] S. N. Antontsev, On the solvability of boundary value problems for degenerate two-phase porous flow equations, Dinamika Splosnoi Sredy Vyp., 10 (1972) 28-53. In Russian. [3] G. Chavent, A new formulation of diphasic incompressible flows in porous media, in “ Applications of Methods of Functional Analysis to Problems in Mechanics ”,Lecture Notes Mathematics. 503 (1976) 258- 270,Springer-Verlag, Berlin, New York, (P. Germain and B. Nayroles, eds.) [4] G. Chavent and J.Jaffre, “Mathematical Models and Finite Elemenes for Reservoir Simulation” , North-Holland, Amsterdam, 1986. [5] J. Douglas, Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM J. Numer. Anal., 22 (1985) 962-969. [6] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numer., 17 (1983) 17-33. [7] J. Douglas, F. Pereira, and L.M. Yeh. A parallelizable method for two-phase flows in naturally fractured reservoirs. Computational Geosciences, 1(3):333–368, 1997. [8] J. Douglas Jr, C.S. Huang, and F. Pereira. The modified method of characteristics with adjusted advection. To appear in Numerische 23 Mathematik; available as Technical Report #298 , Center for Applied Mathematics, Purdue University, June 1997. [9] J. Douglas, F. Pereira, and L.M. Yeh. A locally conservative Eulerian- Lagrangian numerical method and its application to nonlinear transport In porous media.
|