跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊長銘
研究生(外文):Yang, Chung-Ming
論文名稱:在多孔介質中兩相不可壓縮不相容的流體的局部質量守恆計算法
論文名稱(外文):A locally conservative scheme for two-phase incompressible immiscible flows in porous media
指導教授:葉立明
指導教授(外文):Yeh, Li-Ming
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:23
中文關鍵詞:不可壓縮不相溶
外文關鍵詞:incompressibleimmiscible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
應用於本論文的水流問題的數學模型可分為兩部分。一部分就是壓力方程式,另一部分就是saturation方程式。其中saturation方程式又分為transport和diffusion兩部分。在此論文中我們主要著重於解trans- port的部分。在此文中,我們模擬一個長兩百五十六公尺、寬兩百五十六公尺的一個儲油槽。Locally conservative Eulerian-Lagrangian methods (LCELM)是一個有效率的數值方法並且發展來改善在計算transport 方程式中水流質量守恆的部分。從數值模擬的結果,我們可以了解時間變化與流體狀況的關係。
The mathematical model of the waterflood problem which is applied in this paper can be divided into two sections. One is the pressure equation and the other is the saturation equation. And the saturation equation also can be pa- rtitioned into the transport stage saturation and the diffusive stage saturation. However, we will pay more attention to solve the transport stage saturation in this research. Here we construct a meters reservoir system for simu- lation. An efficient numerical method, locally conservative Eulerian-Lagrangian methods (LCELM), is developed to compute the transport equation to improve the conservation of waterflood. From the results of the numerical simulations, we can realize the relation between temporal variation and the flow condition.
Contents

中文摘要................................................i  
Abstract ..............................................ii
Acknowledgements .....................................iii
Contents ..............................................iv

1 Introduction........................................1
2 The Waterflood Problem..............................2
3 Discretization in Temporal Domain ..................4
4 Spatial Discretization ............................ 7
5 Algorithm ........................................ 9
5.1 The Pressure Equation........................ 9
5.2 Transport..................................... 9
5.2.1 MMOC Procedure...........................9
5.2.2 LCELM Procedure.........................11
5.3 Diffusive Fractional Step.................... 14
6 Numerical Results................................. 16
References ............................................22
[1] M. Murad and J. Cushman A multiscale theory of swelling porous media,II:Dial porosity models for consolidation of clay incorporating Physiochemical effects, Preprint #287, Center for Applied Mathematics, Purdue University, August 1996.
[2] S. N. Antontsev, On the solvability of boundary value problems for degenerate two-phase porous flow equations, Dinamika Splosnoi Sredy Vyp., 10 (1972) 28-53. In Russian.
[3] G. Chavent, A new formulation of diphasic incompressible flows in porous media, in “ Applications of Methods of Functional Analysis to Problems in Mechanics ”,Lecture Notes Mathematics. 503 (1976) 258-
270,Springer-Verlag, Berlin, New York, (P. Germain and B. Nayroles,
eds.)
[4] G. Chavent and J.Jaffre, “Mathematical Models and Finite Elemenes for Reservoir Simulation” , North-Holland, Amsterdam, 1986.
[5] J. Douglas, Jr., Superconvergence in the pressure in the simulation of miscible displacement, SIAM J. Numer. Anal., 22 (1985) 962-969.
[6] J. Douglas, Jr., R. E. Ewing, and M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numer., 17 (1983) 17-33.
[7] J. Douglas, F. Pereira, and L.M. Yeh. A parallelizable method for two-phase flows in naturally fractured reservoirs. Computational Geosciences, 1(3):333–368, 1997.
[8] J. Douglas Jr, C.S. Huang, and F. Pereira. The modified method of characteristics with adjusted advection. To appear in Numerische 23 Mathematik; available as Technical Report #298 , Center for Applied Mathematics, Purdue University, June 1997.
[9] J. Douglas, F. Pereira, and L.M. Yeh. A locally conservative Eulerian- Lagrangian numerical method and its application to nonlinear transport In porous media.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top