跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游偉盛
研究生(外文):Wei-Shan Yu
論文名稱:Excited-StateDoubleProtonTransferon3-Substituted-7-AzaindoleAnaloguesandPhotoinducedElectronTransferofNewTypeDonor-Bridge-AcceptorMolecules
論文名稱(外文):Excited-State Double Proton Transfer on 3-Substituted-7-Azaindole Analogues and Photoinduced Electron Transfer of New Type Donor-Bridge-Acceptor Molecules
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:120
中文關鍵詞:質子轉移7-azaindole電子轉移
外文關鍵詞:proton transfer7-azaindoleelectron transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:689
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
Unlike 7-azaindole consisting of the tetrameric configuration, 3-methyl-7-azaindole (3MAI) exists solely as intact double hydrogen-bonded dimeric forms in a single crystal. Both steady state and time-resolved measurements down to 8.0 K reveal remarkable deuterium isotope effects on the rate of excited-state double proton transfer (ESDPT) in the N(1)-deuterated 3MAI (3MAI-d) single crystal. The rates of ESDPT for the 3MAI-d dimer resolved at < 150 K are mainly governed by the proton tunneling mechanism. At < 12 K, the nearly temperature-independent ESDPT dynamics lead us to qualitatively deduce a barrier height of ~ 1.73 kcal/mol for the 3MAI-d dimer. The results provide an ideal model to investigate the intrinsic ESDPT dynamics for 7-azaindole analogues in which the structural information is well documented.
The mechanism of excited-state double proton transfer (ESDPT) reaction of 7-azaindoles in pure water has been solved through design and syntheses of 3-Cyano-7-azaindole (3CAI) and its derivatives. Dual emission consisting of normal (lmax = 350 nm) and tautomer band (lmax = 475 nm) was resolved for 3CAI in pure water. Dynamical studies clearly revealed that the entire rise time of the tautomer emission of 850 ps is identical with the decay time (tf = 855 ps) of the normal emission. Remarkable deuterium isotope effect was observed in D2O where the rise time of 3.50 ns of the tautomer emission correlates well with the lifetime (3.45 ns) of the normal emission. The results lead us to conclude that dynamics of ESDPT with a rate of 850 ps-1 in water (or 3.50 ns-1 in D2O) originate from the entire ground-state solvated species, resolving a long-standing controversy regarding the mechanism of water catalyzed ESDPT in 7-azaindoles.
We have demonstrated a new class of donor-{saturated hydrocarbon bridge}-acceptor (D-B-A) dyads based on a systematic approach to evaluate the corresponding photoinduced electron transfer process. Among these dyads heptacyclo[6.6.0.02,6.03,13.04,11.05,9.010,14]tetradecane (HCTD) was used as a unique spacer, which possesses a geometry of high symmetry (D2d), rigidity and linearity so that electron transfer processes can be examined between donor and acceptor substituents aligned along a straight line across the s-framework. In certain cases, via synthetic routes, the relative orientation of p-orbitals between donor and acceptor was adjusted to either a coplanar (0º) or perpendicular (90º) dihedral angle with respect to each other so that a comparative study could be made by tuning their relative electron coupling properties. The results in combination with theoretical approaches render valuable information on the spectroscopy and dynamics of excited-state electron transfer as functions of donor/acceptor electronic states, orientation as well as solvent properties.

Abstract
Unlike 7-azaindole consisting of the tetrameric configuration, 3-methyl-7-azaindole (3MAI) exists solely as intact double hydrogen-bonded dimeric forms in a single crystal. Both steady state and time-resolved measurements down to 8.0 K reveal remarkable deuterium isotope effects on the rate of excited-state double proton transfer (ESDPT) in the N(1)-deuterated 3MAI (3MAI-d) single crystal. The rates of ESDPT for the 3MAI-d dimer resolved at < 150 K are mainly governed by the proton tunneling mechanism. At < 12 K, the nearly temperature-independent ESDPT dynamics lead us to qualitatively deduce a barrier height of ~ 1.73 kcal/mol for the 3MAI-d dimer. The results provide an ideal model to investigate the intrinsic ESDPT dynamics for 7-azaindole analogues in which the structural information is well documented.
The mechanism of excited-state double proton transfer (ESDPT) reaction of 7-azaindoles in pure water has been solved through design and syntheses of 3-Cyano-7-azaindole (3CAI) and its derivatives. Dual emission consisting of normal (lmax = 350 nm) and tautomer band (lmax = 475 nm) was resolved for 3CAI in pure water. Dynamical studies clearly revealed that the entire rise time of the tautomer emission of 850 ps is identical with the decay time (tf = 855 ps) of the normal emission. Remarkable deuterium isotope effect was observed in D2O where the rise time of 3.50 ns of the tautomer emission correlates well with the lifetime (3.45 ns) of the normal emission. The results lead us to conclude that dynamics of ESDPT with a rate of 850 ps-1 in water (or 3.50 ns-1 in D2O) originate from the entire ground-state solvated species, resolving a long-standing controversy regarding the mechanism of water catalyzed ESDPT in 7-azaindoles.
We have demonstrated a new class of donor-{saturated hydrocarbon bridge}-acceptor (D-B-A) dyads based on a systematic approach to evaluate the corresponding photoinduced electron transfer process. Among these dyads heptacyclo[6.6.0.02,6.03,13.04,11.05,9.010,14]tetradecane (HCTD) was used as a unique spacer, which possesses a geometry of high symmetry (D2d), rigidity and linearity so that electron transfer processes can be examined between donor and acceptor substituents aligned along a straight line across the s-framework. In certain cases, via synthetic routes, the relative orientation of p-orbitals between donor and acceptor was adjusted to either a coplanar (0º) or perpendicular (90º) dihedral angle with respect to each other so that a comparative study could be made by tuning their relative electron coupling properties. The results in combination with theoretical approaches render valuable information on the spectroscopy and dynamics of excited-state electron transfer as functions of donor/acceptor electronic states, orientation as well as solvent properties.

Chapter 1: Introduction ………………………………….…… … 1
Part 1: Dynamics of proton transfer in 7-azaindole host/guest hydrogen-bonded complexes………………………………….…. … 1
I. ESDPT dynamics in the 7AI dimmer………………….…... … 1
II. ESDPT dynamics in 7AI CDHB complexes……………..... … 6
III. Excited-state biprotonic transfer in hydroxylic solvents.... … 7
a.7AIs In alcohols……………………………………… … 7
b.7-Azaindoles in aqueous solution……………………. … 16
Part 2: Electron Transfer - Theoretical Models and Covalently Linked Systems Based on Organic Components………………………… … 18
I. The Superexchange Mechanism…………………………... … 21
References……………………………………………………….. … 24
Chapter 2: Excited-State Double Proton Transfer on 3-Substituted-7-Azaindole Analogues………,…… … 36
Part 1: Excited-State Double Proton Transfer on 3-Methyl-7-Azaindole in a Single Crystal; Deuterium Isotope/Tunneling Effect,…. … 36
1.Results……………………………………………………. … 38
2.Discussion………………………………………………... … 42
3.Conclusion………………………………………….…….. … 47
4.Experimental Section……………………………………. . … 47
References……………………………………………………. … 51
Part 2: Water Catalyzed Excited-State Double Proton Transfer in 3-Cyano-7-Azaindole; The Resolution of the Proton-Transfer Mechanism for 7-Azaindoles in Pure Water…………… … 65
1.Results and Discussion………………………………..….. … 67
2.Conclusion………………………………………………... … 69
3.Experimental Section……………………………………... … 70
References……………………………………………………. … 72
Chapter 3. Photoinduced Electron Transfer Reaction Tuned by Donor-Acceptor Pairs via the Rigid, Linear Spacer Heptacyclo[6.6.0.02,6.03,13.04,11.05,9.010,14]tetradecane.. … 77
1.Results and Discussion……………………….………...… … 79
2.Conclusion………………………………………………... … 92
3.Experimental Section…….……………………………….. … 92
References………………………………………………..…. … 104

. Fuke, K.; Yoshiuchi, H.; Kaya, K. J. Phys. Chem. 1984, 88, 5840.
2. Fuke, K.; Kaya, K. J. Phys. Chem. 1989, 93, 614.
3. Douhal, A.; Kim, S. K.; Zewail, A. H. Nature, 1995, 378, 260.
4. Folmer, D. E.; Poth, L.; Wisniewski, E. S.; Castleman, A. W. Jr. Chem. Phys. Lett. 1998, 287, 1.
5. Douhal, A.; Guallar, V.; Moreno, M.; Lluch, J.-M. Chem. Phys. Lett. 1996, 256, 370.
6. Guallar, V.; Batista, V. S.; Miller, W. H. J. Chem. Phys. 1999, 110, 9922.
7. Catalán, J.; Del Valle, J. C.; Kasha, M. Proc. Natl. Acad. Sci. USA, 1999, 96, 8338.
8. Hetherington, W. M . III; Micheels. R. H.; Eisenthal, K. B. Chem. Phys. Lett. 1979, 66, 230.
9. Share, P.; Pereira, M.; Sarisky, M.; Repinec, S.; Hochstrasser, R. M. J. Lumin. 1991, 48/49, 204.
10. Chachisvilis, M.; Fiebig, T.; Douhal, A.; Zewail, A. H. J. Phys. Chem. A. 1998, 102, 669.
11. Takeuchi, S.; Tahara, T. J. Phys. Chem. A 1998, 102, 7740.
12. Fiebig, T.; Chachisvilis, M.; Manger, M; Zewail, A. H.; Douhal, A.; Garcia-Ochoa, I.; de La Hoz Ayuso, A. J. Phys. Chem. A 1999, 103, 7419.
13. Ingham, K. C.; El-Bayoumi, M. A. J. Am. Chem. Soc. 1974, 96, 1674.
14. Catalán, J.; Kasha, M. J. Phys. Chem. A 2000, 104, 10812.
15. Waluk, J.; Herbich, J.; Oelkrug, D.; Uhl, S. J. Phys. Chem. 1986, 90, 3866.
16. For example, see: Sekikawa, T.; Kobayashi, T.; Inabe, T. J. Phys. Chem. A 1997, 102, 3760.
17. Dufour, P.; Dartiguenave, Y.; Dartiguenave, M.; Dufour, N. Lebuis, A. M.; Belanger-Gariepy, F.; Beauchamp, A. L. Can. J. Chem. 1990, 68, 193.
18. Chou, P. T.; Liao, J. H.; Wei, C. Y.; Yang, C. Y.; Yu, W. S.; Chou, Y. H. J. Am. Chem. Soc. 2000, 122, 986.
19. McMorrow, D.; Aartsma, T. J. Chem. Phys. Lett. 1986, 125, 581.
20. Moog, R. S.; Bovino, S. C.; Simon, J. D. J. Phys. Chem. 1988, 92, 6545.
21. Koijnenberg, J.; Huizer, A. H.; Varma, C. A. G. O. J. Chem. Soc., Faraday Trans. 2 1988, 84 (8), 1163.
22. Negreie, M.; Bellefeuille, S. M.; Whitham, S.; Petrich, J. W.; Thornburg, R. W. J. Am. Chem. Soc. 1990, 112, 7419.
23. Moog, R. S.; Maroncelli, M. J. Phys. Chem. 1991, 95, 10359.
24. Negrerie, M.; Gai, F.; Bellefeuille, S. M.; Petrich, J. W. J. Phys. Chem. 1991, 95, 8663.
25. Chapman, C. F.; Maroncelli, M. J. Phys. Chem. 1992, 96, 8430.
26. Negrerie, M.; Gai, F.; Lambry, J.-C.; Martin, J.-L.; Petrich, J. W. J. Phys. Chem. 1993, 97, 5046.
27. Chen, Y.; Rich, R. L.; Gai, F.; Petrich, J. W. J. Phys. Chem. 1993, 97, 1770.
28. Chen, Y.; Gai, F.; Petrich, J. W. J. Am. Chem. Soc. 1993, 115, 10158.
29. Rich, R. L.; Chen, Y.; Neven, D.; Negrerie, M.; Gai, F.; Petrich, J. W. J. Phys. Chem. 1993, 97, 1781.
30. Gai, F.; Rich, R. L.; Petrich, J. W. J. Am. Chem. Soc. 1994, 116, 735.
31. Mente, S.; Maroncelli, M. J. Phys. Chem. A 1998, 102, 3860.
32. Smirnov, A. V.; English, D. S.; Rich, R. L.; Lane, J. Teyton, L.; Schwabacher, A. W.; Luo, S.; Thornburg, R. W.; Petrich, J. W. J. Phys. Chem. B 1997, 101, 2758, and references therein.
33. Taylor, C. A.; El-Bayoumi, M. A.; Kasha, M. Proc. Natl. Acad. Sci. USA. 1969, 63, 253.
34. When the length of the carbon chain is longer than six carbon atoms, the decay of the normal emission exhibits bi-exponential behavior. These results can be rationalized by the existence of 7AI in two different environments, a hydrogen-bond solvated complex and a non-hydrogen-bonded solute molecule encapsulated by the hydrophobic alkyl groups. This phenomenon is essentially similar to the solute dissolves in the micelle solution. Details have been discussed in ref. 21.
35. Chou, P. T.; Wu, G. R.; Wei, C. Y.; Shiao, M. Y.; Lu, Y. I. J. Phys. Chem. A. 2000, 104, 8863.
36. Herbich, J.; Sepiol, J.; Waluk, J. J. Mol. Struct. 1984, 114, 329.
37. Bulska, H.; Grabowska, A.; Pakula, B.; Sepiol, J.; Waluk, J.; Wild, Urs P. J. Lumin. 1984, 29, 65.
38. Yu, W. S.; Chou, P. T. unpublished results.
39. For example, see: Kim, S. K.; Fleming, G. R. J. Phys. Chem. 1988, 92, 2168.
40. Kyrychenko, A.; Stepanenko, Y.; Waluk, J. J. Phys. Chem. A 2000, 104, 9542.
41. Strandjord, A. J. G.; Barbara, P. F. Chem. Phys. Lett. 1983, 98, 21.
42. Konijnenberg, J.; Huizer, A. H.; Chaudron, F. Th.; Varma, C. A. G. O.; Marciniak, B.; Paszyc, S. J. Chem. Soc. Faraday Trans. 2, 1987, 83, 1475.
43. Konijnenberg, J.; Ekelmans, G. B.; Huizer, A. H.; Varma, C. A. G. O. J. Chem. Soc. Faraday Trans. 2 1989, 85, 39.
44. Chou, P. T.; Martinez, S. S. Chem. Phys. Lett. 1995, 235, 463.
45. Avouris, P.; Yang, L. L.; El-Bayoumi, M. A. Photochem. Photobiol. 1976, 24, 211.
46. Collins, S. T. J. Phys. Chem. 1983, 87, 3202.
47. Chou, P. T.; Martinez, M. L.; Cooper, W. C.; McMorrow, D.; Collin, S. T.; Kasha; M. J. Phys. Chem. 1992, 96, 5203.
48. Gai, F.; Chen, Y.; Petrich, J. W. J. Am. Chem. Soc. 1992, 114, 8343.
49. Chaban, G. M.; Gordon, M. S. J. Phys. Chem. A 1999, 103, 185.
50. Fernández-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z.; Rios, M. A. J. Am. Chem. Soc. 1999, 121, 6280.
51. Smedarchina, Z.; Siebrand, W.; Fernández-Ramos, A.; Gorb, L.; Leszczynski, J. J. Chem. Phys. 2000, 112, 566.
52. Nakajima, A.; Hirano, M.; Hasumi, R.; Kaya, K.; Watanabe, H.; Carter, C. C.; Williamson, J. M.; Miller, T. A. J. Phys. Chem. 1997, 101, 392.
53. Folmer, D. E.; Wisniewski, E. S.; Stairs, J. R.; Castleman, Jr. A. W. J. Phys. Chem. A 2000, 104, 10545.
54. (a) Jortner, J.; Bixon, M., Eds. Adv. Chem. Phys. 1999, 106, entire volume. (b) Jortner, J.; Bixon, M., Eds. Adv. Chem. Phys. 1999, 107, entire volume.
55. Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.
56. Molecular Electronics, Jortner, J.; Ratner, M. A., Eds., Blackwell Science Ltd., Oxford, 1997.
57. Chem. Rev. 1992, 92, issue no. 3 (entire issue).
58. Aviram, A. Molecular Electronics-Science and Technology, Am. Inst. Phys., New York, 1992.
59. Newton, M. D. Chem. Rev. 1991, 91, 767.
60. Hush, N. S. J. Electroanal. Chem. 1999, 460, 5.
61. Newton, M. D.; Sutin, N. Ann. Rev. Phys. Chem. 1984, 35, 437.
62. (a) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. (b) Sutin, N. Prog. Inorg. Chem. 1983, 30, 441. (c) Brunschwig, B. S.; Sutin, N. Coord. Chem. Rev. 1999, 187, 233.
63. Chem. Phys. 1993, 176, issue no. 2,3 (entire issues).
64. (a) Marcus, R. A. J. Chem. Phys. 1956, 24, 966. (b) Marcus, R. A. J. Chem. Phys. 1956, 24, 979. (c) Levich, V. G. Adv. Electrochem. Eng. 1966, 4, 249.
65. Hush, N. S. Electrochim Acta 1968, 13, 1005.
66. Miller, J. R.; Beitz, V. J.; Huddleston, R. K. J. Am. Chem. Soc. 1984, 106, 5057.
67. Miller, J. R. New J. Chem. 1987, 11, 83.
68. McConnell, H. M. J. Chem. Phys. 1961, 35, 508.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top