跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.38) 您好!臺灣時間:2025/11/21 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉小萍
研究生(外文):H. P. Liu
論文名稱:澱粉-聚醋酸乙烯酯與澱粉-聚乙烯醇接枝共聚物之合成及性質研究
論文名稱(外文):Studies on the Synthesis and Properties of Starch-g-Poly(vinyl acetate) and Starch-g-Poly(vinyl alcohol) Copolymers
指導教授:邱文英邱文英引用關係
指導教授(外文):W. Y. Chiu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:101
中文關鍵詞:澱粉聚醋酸乙烯酯聚乙烯醇接枝醇化生物可分解性
外文關鍵詞:starchPVAcPVOHgraftalcoholysisbiodegradability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:562
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究乃利用硝酸銨鈰和過硫酸鉀兩種起始劑,合成玉米澱粉-聚醋酸乙烯酯及水溶性澱粉-聚醋酸乙烯酯之接枝共聚物,來改質澱粉,並藉著聚醋酸乙烯酯之醇化,得到具有水溶性及生物分解性的聚乙烯醇,而使此材料具有生物分解能力及生物適合性。
主要實驗方向為製備澱粉-聚醋酸乙烯酯共聚物,並計算單體總轉化率、接枝比值及接枝效率,同時對接枝共聚物及接枝側鏈作鑑定與性質測試。接著進一步醇化澱粉-聚醋酸乙烯酯共聚物,以得到澱粉-聚乙烯醇共聚物,並對此澱粉-聚乙烯醇共聚物作物性分析及酵素水解、細胞培養測試。
由於玉米澱粉和水溶性澱粉之理化特性有差別,且硝酸銨鈰和過硫酸鉀兩種起始劑之起始機構不同,所得產物測試結果亦不盡相同。研究發現水溶性澱粉系統之單體總轉化率、接枝比值與接枝效率較高於玉米澱粉系統,且隨著單體比例增加,單體總轉化率及接枝比值亦提高。從分子量之測定,得知不論是萃取出的純PVAc或是接枝的PVAc側鏈,都是過硫酸鉀起始系統之分子量較硝酸銨鈰起始系統高,而水溶性澱粉又高於玉米澱粉系統。經由TEM及SEM形態觀察,得到兩種澱粉之硝酸銨鈰起始系統,顆粒較小且均勻分散,水溶性澱粉-過硫酸鉀系統為均勻之大顆粒,而玉米澱粉-過硫酸鉀系統之顆粒大小差異極大。
將澱粉-聚乙烯醇共聚物進行酵素水解測試,發現到水解前玉米澱粉-聚乙烯醇薄膜的表面較為粗糙,可提供較多的地方讓酵素攻擊,所以重量損失較多,而水溶性澱粉-聚乙烯醇薄膜的表面較緻密,酵素不易攻擊,重量損失較少。另外,將產物應用於纖維母細胞培養測試,以過硫酸鉀系統的澱粉-聚乙烯醇薄膜培養效果較好。

Cerium ammonium nitrate (CAN) and potassium persulfate (KPS) were used to initiate the polymerization of vinyl acetate (VAc) monomer onto corn starch and soluble starch respectively to produce starch-graft-PVAc copolymers, and starch-graft-PVOH copolymers with an additional alcoholysis treatment.
The main aspects of this research were the analysis of resulting copolymers including the elucidation of micro-structure with the morphology observations through transmission electron microscope (TEM) and scanning electron microscope (SEM), and product identifications based on Fourier transform infrared (FTIR) spectra. Meanwhile, the reaction kinetics, such as the conversion, the grafting ratio and grafting efficiency, were monitored throughout the experiments. Enzymatic degradation and cell culture were also carried out to evaluate the biodegradability and biocompatibility for PVOH grafted copolymers.
Due to the basic differences of characteristics in types of starch and initiating mechanisms of initiators, the grafted products were quite different in terms of aforementioned characterizations. It was found that the monomer conversion, grafting ratio and grafting efficiency were higher for soluble starch system. The conversion and grafting ratio were increased with increasing monomer ratio. Not only the extracted-PVAc, but also the grafted-PVAc, molecular weights of which attained were higher for KPS systems and soluble starch systems. According to the observation of TEM and SEM, particles are generally smaller and more uniform in sizes for CAN than for KPS system.
In addition, a flexible starch-PVOH film capable of enzymatic degradation and cell culture was obtained. The weight loss was higher for a corn starch-PVOH film, and the test results of fibroblast culture showed positive effects only for KPS system.

目 錄
中文摘要……………………………………………………………....I
英文摘要…………………………………………………………….III
目錄………………………………………………………….……….V
圖索引………………………………………………………….….VIII
表索引………………………………………………………….….XIII
第一章 緒論………………………………………………….....…..1
第二章 文獻回顧………………………………………………..….4
2-1 澱粉的結構與性質…………………………………….…4
2-2 澱粉的改質與應用…………………………………….…6
2-3 聚乙烯醇簡介………………………………………….…9
2-4天然高分子與合成高分子之接枝共聚合反應……….…11
2-5 生物分解性高分子簡介………………………………...16
2-6 生物適合性……………………………………………...19
第三章 實驗……………………………………………………….22
3-1實驗藥品……………………………………………….…22
3-2實驗儀器……………………………………………….…23
3-3 澱粉-聚醋酸乙烯酯接枝共聚物之製備………………..25
3-3.1 實驗流程…………………………..……………….25
3-3.2 接枝共聚合反應…………………………………...25
3-3.3 澱粉-聚醋酸乙烯酯共聚合水溶液之透析………..26
3-3.4 試片製備與組成代號說明………………………...26
3-3.5 去除純聚醋酸乙烯酯及接枝比值與接枝效率
之計算……………………………………………...28
3-3.6 分離接枝側鏈……………………………………...29
3-4 澱粉-聚乙烯醇接枝共聚物之製備………………….….29
3-4.1 實驗流程……………………………………….…..29
3-4.2 醇化反應……………………………………….…..29
3-4.3 薄膜製備與組成代號說明…………………….…..30
3-5 性質研究方法……………………………………….…..30
3-5.1 鑑定產物…………………………………….……..30
3-5.2 形態觀察…………………………………………...31
3-5.3 熱分析…………………………………….………..31
3-5.4 酵素水解測試……………………………….……..32
3-5.5細胞培養…………………………………………....33
第四章 結果與討論………………………………….……….…….35
4-1 澱粉-聚醋酸乙烯酯之接枝共聚物.………………….…36
4-1.1接枝共聚合反應………………………………..…..36
4-1.2 接枝比值與接枝效率分析…………….…….…….37
4-1.3 鑑定產物………………………….…….………….42
4-1.4形態觀察………………………………………..…...44
4-1.5熱分析…………………………………..…………...48
4-2 澱粉-聚乙烯醇之接枝共聚物…………………...……...52
4-2.1傅立葉紅外線光譜儀鑑定結構…………………….52
4-2.2 掃瞄式電子顯微鏡形態觀察..……….………..…52
4-2.3 熱分析……..………………………….…………....53
4-2.4酵素水解測試…………………………………….…55
4-2.5細胞培養………………………………..…………...56
第五章 結論………………………………………...…………..…..58
第六章 參考文獻…………………………………...……………..60

1. D.-K. Kweon, D.-S. CHA, H.-J. Park, and S.-T. Lim, J. Appl. Polym. Sci., 78, 986 (2000).
2. 葉開溫, 陳志成, 生物產業, 6(4), 305 (1995).
3. A. M. Thayer, Chem. Eng. News, 25, 7 (1990).
4. R. Narayan, and S. Bloemberger, Polym. Prepr. 32, 119 (1991).
5. F. H. Otey, A. M. Mark, C. L. Mehltretter, and C.R. Russell, Ind. Eng. Chem. Prod. Res. Dev., 13(1), 90 (1974).
6. F. H. Otey, A. M. Mark, C. L. Mehltretter, and C.R. Russell, Ind. Eng. Chem. Prod. Res. Dev., 13(2), 123 (1974).
7. B. Catia, B. Vittorio, M. Alessandro, T. Gianfranco, L. Roberto, and P. Roberto, U.S. Pat. 5,412,005 (1995).
8. X. Li, H. Yuan, S. Tang, Q. Zhou, and R. Pan, Synthetic Resin and Plastics, 13(2), 8 (1996).
9. K. Terada, T. Sato, H. Maruyama, J. Yamamuchi, and T. Okaya, Japanese J. Polymer Science and Technology, 49(11), 885 (1992).
10. K. Poutanen, and P. Forssell, TRIP, 4(4), 128 (1996).
11. G.M.A. Van Beynum, and J. A. Roels, “Starch Conversion Technology”, 1985.
12. R. B. Seymour, and C. E. Carraher, “Polymer Chemistry”, 3rd, 薛敬和 主譯, 高立, 1998.
13. J. A. Radley, “Starch and its Derivatives”, 4th, 1968.
14. 實用化學工業全書,第十二冊,澱粉工業,東方書店編譯,1964.
15. R. J. Dennenberg, R. J. Bothast, and T. P. Abbott, J. Appl. Polym. Sci., 22, 459 (1978).
16. F. H. Otey, R. P. Westhoff, and W. M. Doane, Ind. Eng. Chem. Prod. Res. Dev., 16(4), 305 (1977).
17. R. Narayan,“Starch Based Plastics in Polymers from Biobase Material”H. L. Chum., ed., p.90, Noyes Data Corp., NJ (1991).
18. T. M. Aminabhavi, R. H. Bakoundgi, and P. E. Casidy, Polym. Plast. Technol. Eng., 29(3), 235 (1990).
19. L. A. Gugleimelli, C. L. Swanson, F. L. Vaker, W. M. Doane, and C. R. Russell, J. Polym. Sci., 18, 923 (1974).
20. M. O. Weaver, W. B. Bagley, G. F. Fanta, and W. B. Doane, U.S. Pat. 3,935,099 (1976), U.S. Pat. 3,985,616 (1976), U.S. Pat. 3,997,484 (1976).
21. 江世熙,台大食品科技研究所碩士論文,1994.
22. 莊文源,台大材料科學與工程學研究所博士論文,2000.
23. M. Booma, S. E. Selke, and J. R. Giacin, J. Elastomers and Plastics, 26, 104 (1994).
24. V. D. Athawale, and S. C. Rathi, Rev. Macromol. Chem. Phys., C39(3), 445 (1999).
25. S. R. Deshmukh, K. Sudhakar, and R. P. Singh, J. Appl. Polym. Sci., 43, 1091 (1991).
26. G. F. Fanta, D. Trimnell, and J. H. Salch, J. Appl. Polym. Sci., 49, 1679 (1993).
27. M. Liu, R. Cheng, J. Wu and C. Ma, J. Polym. Sci., Part A:Polymer Chemistry, 31, 3181 (1993).
28. B. Wurzburg, “Modified Starches: Properties and Uses”, CRC Press, Inc., 1986.
29. B. Vaquez, I. Goni, M. Gurruchaga, M. Valero, and G. Martin Guzman, J. Polym. Sci., Part A:Polymer Chemistry, 30, 1541 (1992).
30. D. R. Patil and G. F. Fanta, J. Appl. Polym. Sci., 47, 1765 (1993).
31. 28. B. N. Misra, I. K. Mehta, and R. Dogra, J. Appl. Polym. Sci., 25, 235 (1980).
32. J.-P. Gao, R.-C. Tian, J.-G. Yu, and M.-L. Duan, J. Appl. Polym. Sci., 53, 1091 (1994).
33. D. Trimnell, G. F. Fanta, and J. H. Salch, J. Appl. Polym. Sci., 60, 285 (1996).
34. J.-P. Gao, J.-G. Yu, W. Wang, L.-M. Chang, and R.-C. Tian, J. Appl. Polym. Sci., 68, 1965 (1998).
35. A. Hebeish, A. Bayazeed, E. El-Alfy, and M. I. Khalil, Starch, 40(6), 223 (1988).
36. A. Bayazeed, M. R. Elzairy, and A. Hebeish, Starch, 41(6), 233 (1989).
37. M. Vert, J. Feijen, and A. Albertsson, Biodegradable Polymers and Plastics, The Royal Society of Chemistry, Cambridge, London (1992).
38. 可分解塑膠研討會專刊,行政院環保署和美國飼料穀物協會主辦,台北,Jan., 1997
39. M. Nakajima, K. Atsumi and K. Kifune, “Advances in Chitin and Chitosan”, C. J. Brine ed., Elsevier Applied Science, London (1992).
40. T. R. Tice, D. W. Mason and R. M. Gilley, in “Novel Drug Delivery and its Therapeutic Application, John Wiley and Sons, New York. 1989.
41. B. Evans, Plastics Technology, 36(5), 41 (1990).
42. Y. Doi, M. Kunioka, Y. Nakamura and K. Soga, Macromolecules, 21, 2722 (1988).
43. Y. Doi, A. Tamaki, Appl. Microbiol. Biotechnol., 28, 330 (1988).
44. T. L. Bluhm, G. K. Hamer, Macromolecules, 19, 2871 (1986).
45. Catia Bastioli, Polymer Degradation and Stability, 59, 263 (1998).
46. R. A. Muzzarelli, “Chitosan” Pergamon Press, Oxford, 1977
47. S. J. Huang, Biodegradable Polymers in “Encyclopedia of Polymers Science and Engineering”, John Wiley and Sons, New York, 1987.
48. J. C. Huang, A. S. Shetty and M. S. Wang, Adv. Polym. Technol., 10(1), 23 (1990).
49. 覃慧萍,台大化工研究所碩士論文,2000.
50. R. Rajaraman, Exp. Cell Res., 88, 327 (1974).
51. T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, and T. Fujinaga, Biomaterials, 18, 947 (1997).
52. S. B. Rao, and C. P. Sharma, J. Biomed. Mater. Res., 34, 21 (1997).
53. G. Yunlin, L. Xiaofei, Z. Yingping, and K. Yao, J. Appl. Polym. Sci., 67, 1965 (1998).
54. Lutfor Rahman, Sidik Silong, Wan Md Zin, M. Zaki ab Rahman, Mansor Ahmad, and Jelas Haron, J. Appl. Polym. Sci., 76(4), 516 (2000).
55. C. T. Greenwood, Adv. Carbohydr. Chem., 22, 486 (1967).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top