跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳明哲
研究生(外文):Ming-Che Wu
論文名稱:含氟 Michaelis-Becker 試劑進行烯化反應研究
論文名稱(外文):Study on the Olefination of Fluorine-containing Michaelis-Becker reagent
指導教授:蔡厚仁
指導教授(外文):Hou-Jen Tsai
口試委員:蘇文炯洪祐明劉明哲
口試委員(外文):Wen-Chiung SuYu-Ming HungMing-Che Liu
口試日期:2013-05-14
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:Michaelis-Becker 反應HWE 反應共溶劑金屬離子
外文關鍵詞:Michaelis-Becker reactionHorner-Wadsworth-Emmons reactionCosolventMetel Ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
三氯化磷 (PCl3) 與 2,2,2-三氟乙醇 (CF3CH2OH) 進行酯化反應製得雙(2,2,2-三氟乙基)亞磷酸酯 ((CF3CH2O)2P(O)H) 化合物。接著在 -42 oC條件下,(CF3CH2O)2P(O)H與氫化鈉 (NaH) 反應而製備出 (CF3CH2O)2P(O)-Na+ 陰離子做為親核性試劑,此離子與溴乙酸乙酯 (BrCH2CO2Et) 於15 oC下經由 Michaelis-Becker 反應製備出乙基[二(2,2,2-三氟乙氧基)氧膦基]乙酸 ((CF3CH2O)2P(O)CH2CO2Et) 化合物,透過核磁共振光譜儀 (1H, 13C, 19F, 31P NMR),元素分析儀 (Elementary Analysis, EA),高解析度質譜儀 (High Resolution Mass, HMRS) 鑑定確立其結構式。以乙基[二(2,2,2-三氟乙氧基)氧膦基]乙酸 ((CF3CH2O)2P(O)CH2CO2Et) 為起始物,四氫呋喃 (THF) 為溶劑,正丁基鋰 (n-BuLi) 為鹼性試劑,在 - 78oC 條件下進行去質子化反應 (Deportonation),形成 [(CF3CH2O)2P(O)CHCO2Et]-Li+ 中間體後,再分別與醛類 (RCHO) (R = C6H5CH=CH, 3,4-F2C6H3, 3-BrC6H4) 及酮類 (3-CF3C6H4)C(O)(CH3) 進行 Horner-Wadsworth-Emmons (HWE) 反應,獲得一系列 (E,Z)- RCH=CHCO2Et 及 (E,Z)- (3-CF3C6H4)(CH3)C=CHCO2Et 化合物。此化合物之特性是在 α 碳上位置引入酯基 (CO2Et) 官能基,同時在 β 位置的碳上可置入多種不同的取代基。本研究並藉由不同的影響因子,如添加共溶劑六甲基磷醯胺 (Hexamethylphosphoramide, HMPA) 與N,N’ - 二羰甲基亞丙基脲 (N,N’ - Dimethylpropyleneurea, DMPU) 或加入金屬離子(LiCl) 於反應混合液中,嘗試控制產物之順反異構物比例。從實驗結果可發現,(E,Z)-RCH=CHCO2Et 化合物中,加入 HMPA 有助於提升 (E)-異構物比例,加入 DMPU 對異構物比例無明顯影響,而加入 LiCl 能提升產物中(E)-異構物至90 % 以上。
關鍵詞: Michaelis-Becker 反應、HWE 反應、共溶劑、金屬離子。
Esterification of phosphorus trichloride (PCl3) with 2,2,2-trifluoroethanol (CF3CH2OH) gives bis(2,2,2-trifluoroethyl)phosphate ((CF3CH2O)2P(O)H). Treat- ment of (CF3CH2O)2P(O)H with sodium hydride under -42oC gives (CF3CH2O)2P(O)-Na+ carbanion. Reaction of (CF3CH2O)2P(O)-Na+ anion with ethyl bromoacetate (BrCH2CO2Et) at 15oC via Michaelis-Becker reaction affords ethyl [bis(2,2,2)trifluoroethoxy)phosphinyl] acetate ((CF3CH2O)2P(O)CH2CO2Et) which the structure was confirmed by 1H NMR, 13C NMR, 19F NMR, 31P NMR, Elementary Analysis (EA) and High Resolution Mass (HRMS). Deprontonation of starting material ((CF3CH2O)2P(O)CH2CO2Et) with n-butyl lithium (n-BuLi) under -78oC in tetrahydrofuran (THF) provides [(CF3CH2O)2P(O)CH2CO2Et]-Li+ anion. Subsequently reactions of [(CF3CH2O)2P(O)CH CO2Et]-Li+ anion with aldehydes (RCHO) (R = C6H5CH=CH, 3,4-F2C6H3, 3-BrC6H4) and ketones (3-CF3C6H4)C(O)- (CH3) via Horner-Wadsworth-Emmons (HWE) reaction give the vinyl compounds (E,Z)-RCH=CHCO2Et and (E,Z)-(3-CF3C6H4)(CH3)C=CHCO2Et respectively. The prepared vinyl compounds which put the ester group at α-carbon postion and different substituents at β-carbon position act as the precursors to the bioactive compounds. The stereoselectivity of the products depend on the cosolvents (Hexamethylphosphoramide (HMPA) and (N,N’ - Dimethylpropyleneurea (DMPU)) and metal ion (LiCl) presented in the reaction mixture. Experimental results show that in the presence of HMPA, the ratios of (E)-RCH=CHCO2Et increase obviously. Cosolvent DMPU have little effect on the E/Z ratio. In the presence of LiCl, the ratios of (Z)-RCH=CHCO2Et over 90% were observed.
Keywords : Michaelis-Becker reaction, Horner-Wadsworth-Emmons reaction, Cosolvent, Metel Ion.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1研究動機及目的 1
1.2研究架構及方法 2
2. 文獻回顧 4
2.1 五價磷的合成 4
2.2 Michaelis-Becker 試劑合成 5
2.3 乙烯類化合物的合成 6
3. 實驗 10
3.1 實驗藥品 10
3.2 實驗儀器 11
3.3 實驗步驟 12
3.3.1 (CF3CH2O)2P(O)H 合成 12
3.3.2 (CF3CH2O)2P(O)CH2CO2Et 合成 12
3.3.3 (C6H5CH=CH)CH=CHCO2Et 合成 13
3.3.4 (3,4-F2C6H3)CH=CHCO2Et 合成 14
3.3.5 (3-CF3C6H4)C(CH3)=CHCO2Et 合成 15
3.3.6 (3-BrC6H4)CH=CHCO2Et 合成 15
3.4 (CF3CH2O)2P(O)CH2CO2Et 在不同條件下與反式肉桂醛反應 17
3.4.1 加入共溶劑六甲基磷醯胺 (HMPA) 17
3.4.2加入共溶劑N,N’ - 二羰甲基亞丙基脲 (DMPU) 17
3.4.3 加入金屬離子氯化鉀 (LiCl) 18
3.5 (CF3CH2O)2P(O)CH2CO2Et 在不同條件下與3,4-二氟苯甲醛反應 19
3.5.1 加入共溶劑六甲基磷醯胺 (HMPA) 19
3.5.2 加入共溶劑N,N’ - 二羰甲基亞丙基脲 (DMPU) 20
3.5.3 加入金屬離子氯化鉀 (LiCl) 21
3.6 (CF3CH2O)2P(O)CH2CO2Et 在不同條件下與間三氟甲基苯乙酮反應 21
3.6.1 加入共溶劑六甲基磷醯胺 (HMPA) 21
3.6.2 加入共溶劑N,N’ - 二羰甲基亞丙基脲 (DMPU) 22
3.6.3 加入金屬離子氯化鉀 (LiCl) 23
3.7 (CF3CH2O)2P(O)CH2CO2Et 在不同條件下與3-溴苯甲醛反應 24
3.7.1 加入共溶劑六甲基磷醯胺 (HMPA) 24
3.7.2 加入共溶劑N,N’ - 二羰甲基亞丙基脲 (DMPU) 24
3.7.3 加入金屬離子氯化鉀 (LiCl) 25
4. 結果與討論 27
4.1 起始物含氟磷酸酯類 (CF3CH2O)2P(O)CH2CO2Et 的合成 27
4.2 (CF3CH2O)2P(O)CH2CO2Et 與醛類反應: RCH=CHCO2Et製備 30
4.3 共溶劑與金屬離子對形成 (E,Z)-RCH=CHCO2Et 異構物立體化學研究 35
4.4 (CF3CH2O)2P(O)CH2CO2Et 與酮類反應:(3-CF3C6H4)(CH3)C=CHCO2Et 41
製備 41
5. 結論 45
參考文獻 46
附錄 50
自傳 75

[1] Mccarthy, J. R., Matthews, D. P., Stemerick, D. M., Huber, W., Bey, P., Lippert, B. J., Snyder, R. D., and Sunkara, P. S., “Stereospecific Method to (E) and (Z) Terminal Fluoro Olefins and Its Application to the Synthesis of 2'-Deoxy-2'-Fluoromethylene Nucleosides as Potential Inhibitors of Ribonucleoside Diphosphate Reductase,” Journal of the American Chemical Society, Vol. 113, No. 19, pp. 7439-7440, 1991.
[2] Nair, N. K., and Burton, D. J., “Novel Diakyl (β-Halotetrafluoroethyl)- phosphonates Facile Synthesis viaThermally and Photochemically Induced Radical Reactions. A Nnique Photochemical Transformation of BrCF2CF2I,” Journal of the American Chemical Society, Vol. 116, No. 4-5, pp. 6041-6042, 1994.
[3] Córdoba-Díaz, M., Córdoba-Borrego, M., and Córdoba-Díaz, D., “Modification of Fluorescent Properties of Norfloxacin in the Presence of Certain Antacids,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 18, pp. 565-571, 1998.
[4] Lontz, J. F., and Happoldt, W. B., “Teflon Tetrafluoroethylene Resin Dispersion: A New Aqueous Colloidal Dispersion of Polytetrafluoroethylene,” Industrial & Engineering Chemistry, Vol. 44, No. 8, pp. 1800-1805, 1952.
[5] 石川延男、聞建勛、聞宇清,含氟生理活性物質的開發和應用,華東理工大學出版社,上海,第 119 頁, 2000.
[6] Chambers, R.D., Fluorine in Organic Chemistry, Wiley interscience, New York, pp. 278-279, 1973.
[7] Wang, H. P., Liao, S. H., Lin, K. S., Huang, Y. J., and Wang, H. C., “Pyrolysis of PU / CFCs Wasters,” Journal of Hazardous Materials, Vol. 58, No.1-3, pp. 221-226, 1998.
[8] Aksnes, G., and Aksnes, D., “A Kinetic Study of Michaelis-Arbuzov Reactions,” Acta Chemica Scandinavica, Vol. 18, No. 1, pp. 38-46, 1964.
[9] Bhatacharya, A. K., and Thyagarman, G., “The Michaelis-Arbuzov Rearrangement,” Chemical Reviews, Vol. 81, No. 4, pp. 415-430, 1981.
[10]Timperley, C. M., Arbon, R. E., Saunders, S. A., and Matthew J. W., “Fluorinated Phosphorus Compounds: Part 6. The Synthesis of Bis(fluoroalkyl) Phosphites and Bis(fluoroalkyl) Phosphorohalidates,” Journal of Fluorine Chemistry , Vol. 113, pp. 65-78, 2002.
[11]Fakhraian, A., and Mirzaei, A., “Reconsideration of the Base-Free Batch-Wise Esterification of Phosphorus Trichloride with Alcohols,” Organic Process Research & Development, Vol. 8, No. 3, pp. 401-404, 2004.
[12]Andre, V., Lahrache, H., Robina, S., and Rousseau, G., “Reaction of Unsaturated Phosphonate Monoesters with Bromo- and Iodo(bis-collidine) Hexafluoro- Phosphates,” Tetrahedron, Vol. 63, No. 40, pp. 10059-10066, 2007.
[13]Prado, V. S., and Burtoloso, A. C. B., “An Improved Procedure for the Preparation of [Bis(2,2,2-trifluoroethyl) phosphono] Acetic Acid,” Synthesis, No. 2, pp. 361-363, 2010.
[14]Abe, M., Nishikawa, K., Fukuda, H., Nakanishi, K., Tazawa, Y., Taniguchi, T., Park, S. Y., Hiradate, S., Fujii, Y., Okuda, K., and Shindo, M., “Key Structural Features of Cis-cinnamic Acid as an Allelochemical,” Phytochemistry, Vol. 84, pp. 56-67, 2012.
[15]Engman, M., Diesen, J. S., Paptchikhine, A., and Andersson, P. G., “Iridium-Catalyzed Asymmetric Hydrogenation of Fluorinated Olefins Using N,P-Ligands: A Struggle with Hydrogenolysis and Selectivity,” Journal of the American Chemical Society, Vol. 129, No. 15, pp. 4536-4537, 2007.
[16]Alacid, E., and Najera, C., “Aqueous Sodium Hydroxide Promoted Cross-coupling Reactions of Alkenyltrialkoxysilanes under Ligand-Free Conditions,” Journal of the American Chemical Society, Vol. 73, No. 6, pp. 2315-2322, 2008.
[17]Pfund, E., Lebargy, C., Rouden, J., and Lequeux, T., “Modified Julia Fluoroolefination: Selective Preparation of Fluoroalkenoates,” The Journal of Organic Chemistry, Vol. 72, No. 21, pp. 7871-7877, 2007.
[18]Solar, M., Ghosh, A. K., and Zajc, B., “Fluoro-Julia Olefination as a Mild, High-Yielding Route to α-Fluoro Acrylonitriles,” The Journal of Organic Chemistry, Vol. 73, No. 21, pp. 8206-8211, 2008.
[19]Surya, G. K., Shao, N., Zhang, Z., Ni, C., Wang, F., Haiges, R., and Olah, G. A., “Facile Synthesis of α-Monofluoromethyl Alcohols: Nucleophilic Monofluoromethylation of Aldehydes Using TMSCF(SO2Ph)2,” Journal of Fluorine Chemistry, Vol. 133, pp. 27-32, 2012.
[20]Palomo, C., Aizpurua, J. M., Garcia, J. M., Ganboa, I., Cossio, F. P., Lecea, B., and Lopez, C., “A New Version of the Peterson Olefination Using Bis(trimethylsily1)methyl Derivatives and Fluoride Ion as Catalyst,” The Journal of Organic Chemistry, Vol. 55, No. 8, pp. 2498-2503, 1990.
[21]Ando, K., “Practical Synthesis of Z-unsaturated Esters by Using a New Horner-Emmons Reagent, Ethyl Diphenylphosphonoacetate,” Tetrahedron Letters, Vol. 36, No. 23, pp. 4105-4108, 1995.
[22]Kang, S. K., Yamaguchi, T., Ho, P. S., Kim, W. Y., and Yoon, S. K., “Palladium-Catalyzed Coupling and Carbonylative Coupling of Silyloxy Compounds With Hypervalent Iodonium Salts,” Tetrahedron Letters, Vol. 38, No. 11, pp. 1947-1950, 1997.
[23]Crombie, A. L., Kane, J. L., Shea, K. M., and Danheiser, R. L., “Ring Expansion-Annulation Strategy for the Yynthesis of Substituted Azulenes and Oligoazulenes. 2. Synthesis of Azulenyl Halides, Sulfonates, and Azulenylmetal Compounds and Their Application in Transition-Metal-Mediated Coupling Reactions,” The Journal of Organic Chemistry, Vol. 69, No. 25, pp. 8652-8667, 2004.
[24]Geirsson, J. K. F., Gudmundsson, B. O., and Sigurdardottir, R., “Unexpected Lack of Stereoselectivity in the Horner-Wadsworth-Emmons Reaction when Applied to the Synthesis of (E)- and (Z)-Methyl α-Arylcinnamates,” Acta Chemica Scandinavica, Vol. 47, No. 11, pp. 1112-1116, 1993.
[25]Sano, S., Takemoto, Y., and Nagao, Y., “(E)-Selective Horner-Wadsworth- Emmons Reaction of Aryl Alkyl Ketones with Bis(2,2,2-trifluoroethyl) phosphonoacetic Acid,” Tetrahedron Letters, Vol. 44, No. 49, pp. 8853-8855, 2003.
[26]Steenis, J. H., Nieuwendijk, A., and Gen, A., “α-Fluoroacrylonitriles: Horner–Wittig Synthesis and Conversion into 2-Fluoroallylamines and C-(1-fluorovinyl)nitrones,” Journal of Fluorine Chemistry, Vol. 125, No.1, pp. 107-117, 2004.
[27]Sacasa, P. R., Zayas, J., and Wnuk, S. F., “Radical-Mediated Thiodesulfonylation of the Vinyl Sulfones: Access to (α-Fluoro)vinyl Sulfides,” Tetrahedron Letters, Vol. 50, No. 38, pp. 5424-5427, 2009.
[28]Chintareddy, V. R., Ellern, A., and Verkade, J. G., “P[N(i-Bu)CH2CH2]3N: Nonionic Lewis Base for Promoting the Room-Temperature Synthesis of α,β-Unsaturated Esters, Fluorides, Ketones, and Nitriles Using Wadsworth- Emmons Phosphonates,” The Journal of Organic Chemistry, Vol. 75, No. 21, pp. 7166-7174, 2010.
[29]Pinho, V. D., and Burtoloso, A. C. B., “Preparation of α,β-Unsaturated Diazoketones Employing a Horner-Wadsworth-Emmons Reagent,” The Journal of Organic Chemistry, Vol. 76, No. 1, pp. 289-292, 2011.
[30]Tsai, H. J., Lin K. W., Ting, T. H., and Burton, D. J., “A General and Efficient Route for the Preparation of Phenyl-Substituted Vinyl Fluorides,” Helvetica Chimica Acta, Vol. 82, No. 12, pp. 2231-2239, 1999.
[31]Thenappan, A., and Burton, D. J., “Reduction-Olefination of Esters: A New and Efficient Synthesis of α-Fluoro α,β-Unsaturated Esters,” The Journal of Organic Chemistry, Vol. 55, No. 15, pp. 4639-4642, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top