|
1.Gatenby, R.A. and R.J. Gillies, A microenvironmental model of carcinogenesis. Nat Rev Cancer, 2008. 8(1): p. 56-61. 2.Arteaga, C.L., Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist, 2002. 7 Suppl 4: p. 31-9. 3.Cantley, L.C., et al., Oncogenes and signal transduction. Cell, 1991. 64(2): p. 281-302. 4.Sarkisian, C.J., et al., Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol, 2007. 9(5): p. 493-505. 5.Rubin, H., Multistage carcinogenesis in cell culture. Dev Biol (Basel), 2001. 106: p. 61-6; discussion 67, 143-60. 6.Park, H.J., et al., Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer, 1999. 80(12): p. 1892-7. 7.Gatenby, R.A., et al., Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer, 2007. 97(5): p. 646-53. 8.Gatenby, R.A. and E.T. Gawlinski, A reaction-diffusion model of cancer invasion. Cancer Res, 1996. 56(24): p. 5745-53. 9.Rozhin, J., et al., Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res, 1994. 54(24): p. 6517-25. 10.Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8. 11.Williams, K.J., R.L. Cowen, and I.J. Stratford, Hypoxia and oxidative stress. Tumour hypoxia--therapeutic considerations. Breast Cancer Res, 2001. 3(5): p. 328-31. 12.Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 1989. 49(23): p. 6449-65. 13.Gao, C., et al., Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proc Natl Acad Sci U S A, 2007. 104(21): p. 8995-9000. 14.Bindra, R.S. and P.M. Glazer, Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res, 2005. 569(1-2): p. 75-85. 15.Corn, P.G. and W.S. El-Deiry, Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer Biol Ther, 2007. 6(12): p. 1858-66. 16.Bristow, R.G. and R.P. Hill, Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer, 2008. 8(3): p. 180-92. 17.Prabhakar, N.R., Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol, 2001. 90(5): p. 1986-94. 18.Welbourn, C.R., et al., Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg, 1991. 78(6): p. 651-5. 19.Hockel, M. and P. Vaupel, Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst, 2001. 93(4): p. 266-76. 20.Fyles, A., et al., Long-term performance of interstial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother Oncol, 2006. 80(2): p. 132-7. 21.Magagnin, M.G., M. Koritzinsky, and B.G. Wouters, Patterns of tumor oxygenation and their influence on the cellular hypoxic response and hypoxia-directed therapies. Drug Resist Updat, 2006. 9(4-5): p. 185-97. 22.Nordsmark, M., et al., Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol, 2005. 77(1): p. 18-24. 23.Nordsmark, M., et al., The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol, 2006. 80(2): p. 123-31. 24.Nordsmark, M., M. Overgaard, and J. Overgaard, Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol, 1996. 41(1): p. 31-9. 25.Brown, J.M. and W.R. Wilson, Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer, 2004. 4(6): p. 437-47. 26.Vaupel, P., A. Mayer, and M. Hockel, Tumor hypoxia and malignant progression. Methods Enzymol, 2004. 381: p. 335-54. 27.Gulledge, C.J. and M.W. Dewhirst, Tumor oxygenation: a matter of supply and demand. Anticancer Res, 1996. 16(2): p. 741-9. 28.Dewhirst, M.W., Mechanisms underlying hypoxia development in tumors. Adv Exp Med Biol, 2003. 510: p. 51-6. 29.Kirkpatrick, J.P., L.I. Cardenas-Navia, and M.W. Dewhirst, Predicting the effect of temporal variations in PO2 on tumor radiosensitivity. Int J Radiat Oncol Biol Phys, 2004. 59(3): p. 822-33. 30.Rofstad, E.K. and K. Maseide, Radiobiological and immunohistochemical assessment of hypoxia in human melanoma xenografts: acute and chronic hypoxia in individual tumours. Int J Radiat Biol, 1999. 75(11): p. 1377-93. 31.Subarsky, P. and R.P. Hill, The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis, 2003. 20(3): p. 237-50. 32.Rofstad, E.K., Microenvironment-induced cancer metastasis. Int J Radiat Biol, 2000. 76(5): p. 589-605. 33.Wenger, R.H., Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J, 2002. 16(10): p. 1151-62. 34.Semenza, G.L., HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell, 2001. 107(1): p. 1-3. 35.Jaakkola, P., et al., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001. 292(5516): p. 468-72. 36.Giaccia, A.J., M.C. Simon, and R. Johnson, The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev, 2004. 18(18): p. 2183-94. 37.Hewitson, K.S. and C.J. Schofield, The HIF pathway as a therapeutic target. Drug Discov Today, 2004. 9(16): p. 704-11. 38.Vengellur, A., et al., Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1alpha null mouse embryonic fibroblasts. Gene Expr, 2003. 11(3-4): p. 181-97. 39.Denko, N.C., et al., Investigating hypoxic tumor physiology through gene expression patterns. Oncogene, 2003. 22(37): p. 5907-14. 40.Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005. 307(5706): p. 58-62. 41.Tozer, G.M., C. Kanthou, and B.C. Baguley, Disrupting tumour blood vessels. Nat Rev Cancer, 2005. 5(6): p. 423-35. 42.Carmeliet, P. and R.K. Jain, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249-57. 43.Pugh, C.W. and P.J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med, 2003. 9(6): p. 677-84. 44.Lyden, D., et al., Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 2001. 7(11): p. 1194-201. 45.Dor, Y., R. Porat, and E. Keshet, Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol, 2001. 280(6): p. C1367-74. 46.Kerbel, R. and J. Folkman, Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2002. 2(10): p. 727-39. 47.Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10. 48.Durand, R.E. and C. Aquino-Parsons, Clinical relevance of intermittent tumour blood flow. Acta Oncol, 2001. 40(8): p. 929-36. 49.Bennewith, K.L. and R.E. Durand, Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res, 2004. 64(17): p. 6183-9. 50.Baish, J.W. and R.K. Jain, Fractals and cancer. Cancer Res, 2000. 60(14): p. 3683-8. 51.Padera, T.P., et al., Pathology: cancer cells compress intratumour vessels. Nature, 2004. 427(6976): p. 695. 52.Cairns, R.A. and R.P. Hill, Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res, 2004. 64(6): p. 2054-61. 53.Cairns, R.A., T. Kalliomaki, and R.P. Hill, Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res, 2001. 61(24): p. 8903-8. 54.Dewhirst, M.W., et al., Microvascular studies on the origins of perfusion-limited hypoxia. Br J Cancer Suppl, 1996. 27: p. S247-51. 55.Chaplin, D.J., P.L. Olive, and R.E. Durand, Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res, 1987. 47(2): p. 597-601. 56.Brurberg, K.G., B.A. Graff, and E.K. Rofstad, Temporal heterogeneity in oxygen tension in human melanoma xenografts. Br J Cancer, 2003. 89(2): p. 350-6. 57.Durand, R.E., Intermittent blood flow in solid tumours--an under-appreciated source of ''drug resistance''. Cancer Metastasis Rev, 2001. 20(1-2): p. 57-61. 58.Denekamp, J. and A. Dasu, Inducible repair and the two forms of tumour hypoxia--time for a paradigm shift. Acta Oncol, 1999. 38(7): p. 903-18. 59.Sturn, A., J. Quackenbush, and Z. Trajanoski, Genesis: cluster analysis of microarray data. Bioinformatics, 2002. 18(1): p. 207-8. 60.Wang, D., P. Kranz-Eble, and D.C. De Vivo, Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat, 2000. 16(3): p. 224-31. 61.Rittenhouse, H.G., et al., Human Kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci, 1998. 35(4): p. 275-368. 62.Sowter, H.M., et al., HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 2001. 61(18): p. 6669-73. 63.Toffoli, S., et al., NDRG1 and CRK-I/II are regulators of endothelial cell migration under Intermittent Hypoxia. Angiogenesis, 2009. 12(4): p. 339-54. 64.Brown, J.M. and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res, 1998. 58(7): p. 1408-16. 65.Karihtala, P. and Y. Soini, Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS, 2007. 115(2): p. 81-103. 66.Hockel, M., et al., Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res, 1996. 56(19): p. 4509-15. 67.Rofstad, E.K., N.M. Johnsen, and H. Lyng, Hypoxia-induced tetraploidisation of a diploid human melanoma cell line in vitro. Br J Cancer Suppl, 1996. 27: p. S136-9. 68.Sanna, K. and E.K. Rofstad, Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer, 1994. 58(2): p. 258-62. 69.Young, S.D., R.S. Marshall, and R.P. Hill, Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A, 1988. 85(24): p. 9533-7. 70.Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005. 17(5): p. 548-58. 71.Grego-Bessa, J., et al., Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle, 2004. 3(6): p. 718-21. 72.Martin, T.A. and W.G. Jiang, Tight junctions and their role in cancer metastasis. Histol Histopathol, 2001. 16(4): p. 1183-95. 73.Robey, I.F., et al., Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia, 2005. 7(4): p. 324-30. 74.Liu, L., et al., Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell, 2006. 21(4): p. 521-31. 75.Hoffman, R.M., Methioninase: a therapeutic for diseases related to altered methionine metabolism and transmethylation: cancer, heart disease, obesity, aging, and Parkinson''s disease. Hum Cell, 1997. 10(1): p. 69-80. 76.Tang, Z., et al., Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem, 1996. 271(4): p. 2255-61. 77.Williams, T.M. and M.P. Lisanti, The caveolin proteins. Genome Biol, 2004. 5(3): p. 214. 78.Shatz, M. and M. Liscovitch, Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol, 2008. 84(3): p. 177-89. 79.Dewhirst, M.W., Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer, 2008. 8(6): p. 425-37. 80.Walker, J.L. and R.K. Assoian, Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression. Cancer Metastasis Rev, 2005. 24(3): p. 383-93. 81.Swanton, C., Cell-cycle targeted therapies. Lancet Oncol, 2004. 5(1): p. 27-36. 82.Krtolica, A., N.A. Krucher, and J.W. Ludlow, Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities. Oncogene, 1998. 17(18): p. 2295-304. 83.Thomlinson, R.H., Hypoxia and tumours. J Clin Pathol Suppl (R Coll Pathol), 1977. 11: p. 105-13. 84.Ellen, T.P., et al., NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis, 2008. 29(1): p. 2-8. 85.Kokame, K., H. Kato, and T. Miyata, Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes. J Biol Chem, 1996. 271(47): p. 29659-65. 86.Kurdistani, S.K., et al., Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res, 1998. 58(19): p. 4439-44. 87.Taketomi, Y., et al., Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochem Biophys Res Commun, 2003. 306(2): p. 339-46. 88.Piquemal, D., et al., Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochim Biophys Acta, 1999. 1450(3): p. 364-73. 89.Guan, R.J., et al., Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res, 2000. 60(3): p. 749-55. 90.van Belzen, N., et al., A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab Invest, 1997. 77(1): p. 85-92. 91.Bandyopadhyay, S., et al., The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res, 2003. 63(8): p. 1731-6. 92.Bandyopadhyay, S., et al., PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res, 2004. 64(21): p. 7655-60. 93.Zhou, D., K. Salnikow, and M. Costa, Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Res, 1998. 58(10): p. 2182-9. 94.Salnikow, K., et al., Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis, 1999. 20(9): p. 1819-23. 95.Salnikow, K., et al., Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res, 2000. 60(13): p. 3375-8. 96.Salnikow, K., et al., Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res, 2000. 60(20): p. 5630-4. 97.Salnikow, K., et al., The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol, 2002. 22(6): p. 1734-41. 98.Kalaydjieva, L., et al., Gene mapping in Gypsies identifies a novel demyelinating neuropathy on chromosome 8q24. Nat Genet, 1996. 14(2): p. 214-7. 99.Shimono, A., T. Okuda, and H. Kondoh, N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev, 1999. 83(1-2): p. 39-52. 100.Cangul, H., Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet, 2004. 5: p. 27. 101.Gomez-Casero, E., et al., Regulation of the differentiation-related gene Drg-1 during mouse skin carcinogenesis. Mol Carcinog, 2001. 32(2): p. 100-9. 102.Graeber, T.G., et al., Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol, 1994. 14(9): p. 6264-77. 103.An, W.G., et al., Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 1998. 392(6674): p. 405-8. 104.Maruyama, Y., et al., Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res, 2006. 66(12): p. 6233-42.
|