跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林雨農
論文名稱:銷售力之數學模型
論文名稱(外文):A Mathematical Model Model on Sale Intensity
指導教授:李明融李明融引用關係
學位類別:碩士
校院名稱:國立政治大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:30
中文關鍵詞:傳導方程銷售力擴散係數
外文關鍵詞:heat equationsale intensitydiffusion coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銷售力一直是一個企業關切的主要議題,借助Vidale-Wolfe數學模型,我們提出一個銷售力數學模型。藉由熱傳導方程,刻畫由資訊交流產生的自身銷售力。在資訊交流及商品促銷下產生的銷售力,可經由非齊次熱傳導方程描繪。然而,我們無法以單一非齊次熱傳導方程描繪所有情況,因此,模型建立與問題解決須於不同情況下逐一地討論。
透過充分的數據,銷售力是可以被預估的;另外,我們也可以利用此模型,對於行銷策略加以評估。
異於以往大部分的研究,此模型加入了空間上的概念,對於傳導現象而言,這是相當重要的。
Sale intensity is always one of the major subjects that business is concerned
about. We propose a mathematical model based on the concept given by
Vidale-Wolfe to characterize the behavior of sale intensity.
Using the sense of diffusion in heat equation, we could characterize the
behavior of sale intensity starting from the spontaneous sale intensity caused
by the circulating of information. The behavior of changing on sale intensity under the effect of diffusing by
the circulating of information and the promoting activities can be generally
modeled as nonhomogeneous heat equations. However, because of the great difference between cases, the problem
formulating and model solving cannot be generally modeled as one certain
nonhomogeneous heat equation and are restricted to be discussed case by case.%
The further sale intensity is predictable possibly with sufficient data, but
without sufficient data, we can also use the model to appraise the
spontaneous sale intensity and the benefit of each advertising strategy in
practical.
Different from most previous relevant studies, the model supports the studies of sale
intensity diffusing over geographic regions, which is especially of significance
in spontaneous sale intensity.
中文摘要 i
Abstract ii
1.Introduction 1
2.Preliminaries and notation 4
3.Model and problem formulation 5
4.Solution for the relatively short advertising campaign 10
5.Application in practical 14
6.Discussion 17
7.Conclusion 23
References 25
[1] Vidale, M.L., and Wolfe, H.B., An Operation Research Study for Sale Responce
to Advertising , Operations Research 5 (1957), 370-381.
[2] Nerlove, M., and J.K. Arrow, Optimal Advertising Policy Under Dynamic Conditions
, Econamica, 29 (1962), 129-142.
[3] Kaliappan, P., nonlinear heat equations: An exact solution for travelling waves
of ut = Duxx + u ¡ uk: , Physica D. 11 (1984), 368-374.
[4] Marinelli Carlo, and Savin Sergei, Optimal distributed dynamic advertising,
eprint arXiv:math, 0406435 (2004).
[5] Agmon,S., Lectures on Elliptic Boundary Value Problems , D. Van Nostrand
Co., Princeton,1965. 29 (1965).
[6] Nerlove, M., and J.K. Arrow, Mathmetical Methods in Optimization of Differential
Systems, Kluwer,Dorrecht, (1995).
[7] Bronnenberg, B.J., and V. Mahajan, Unobserved Retailer Behavior in Multi-
Market data:Joint Spatial Dependence in Market Shares and Promotion Variables
, Marketing Science, 20 (2001), 284-299.
[8] Dube, J.P., and P. Manchanda, Difference in Dynamic Brand Competition
across Markets: An Empirical Analysis, Forthcoming Marketing Science, (2004).
[9] Feichtinger, G., Hartl, R.F., and S.P. Sethi, Dynamic Optimal Control Model in
Advertising: Resent Developments, Management Science, 40 (1994),195-226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top