|
參考文獻 [1]Junjia Wang, Ivan Glesk, and Lawrence R. Chen, “Subwavelength grating filtering devices,” Opt. Express, vol. 22, no. 13, pp. 15335-15345, 2014. [2]Vadim Karagodsky, Forrest G. Sedgwick, and Connie J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express, vol. 18, no. 16, pp. 16973-16988, 2010. [3]D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett., vol. 23, no. 9, pp. 700-702, 1998. [4]J. Stohr, M. G. Samant, “Liquid crystal alignment by rubbed polymer surfaces: a microscopic bond orientation model,” Journal of Electron Spectroscopy and Related Phenomena, 98-99, 189-207, 1999. [5]M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B, 68, 81-85, 1999. [6]Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 67, pp. 3114-3116, 1995. [7]D. Gabor, “A new Microscopic Principle,” Nature, vol. 161, pp. 777-778, 1948. [8]Ikjoo Byun and Joonwon Kim, “Cost-effective laser interference lithography using a 405nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20, pp. 055024, 2010. [9]T. Ohira, T. Segawa, K. Nagai, S. Takahashi, K. Utaka, and M. Nakao, “InP 2D nano-structures fabricated by two-time laser holography,” IPRM. IEEE International Conference, Indium Phosphide and Related Materials, pp. 268-271, 2001. [10]W. Mao, I. Wathuthanthri, and C.-H. Choi, “Tunable two-mirror laser interference lithography system for large-area nano-patterning,” Proc. SPIE, vol. 7970, pp. 79701K-79701K-8, 2011. [11]Yoshiaki Kanamori, Masaya Shimono, and Kazuhiro Hane, “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates,” IEEE Photon. Technol. Lett., vol. 18, no.2, pp. 2126-2128, 2006. [12]Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett. 89, pp. 051102-051102-3, 2006. [13]Hong-Shik Lee, Yeo-Taek Yoon, Sang-Shin Lee, Sang-Hoon Kim and Ki-Dong Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express, vol. 15, no. 23, pp. 15457-15463, 2007. [14]Sajeev John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, 1987. [15]David Rosenblatt, Member, IEEE, Avner Sharon, and Asher A. Friesem, Fellow, IEEE, “Resonant Grating Waveguide Structures, ” IEEE Journal of Quantum Electronics, vol. 33, no. 11, 1997. [16]Junjia Wang, Ivan Glesk, and Lawrence R. Chen, “Subwavelength grating filtering devices,” Opt. Express, vol. 22, no. 13, pp. 15335-15345, 2014. [17]Eun-Hyoung Cho, Hae-Sung Kim, Byoung-Ho Cheong, Prudnikov Oleg, Wenxu Xianyua, Jin-Seung Sohn, Dong-Joon Ma, Hwan-Young Choi, No-Cheol Park, and Young-Pil Park, “Two-dimensional photonic crystal color filter development,” Opt. Express, vol. 17, no. 10, pp. 8621-8629, 2009. [18]Yoshiaki Kanamori, Toshikazu Ozaki, and Kazuhiro Hane, “Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings,” Opt. Express, vol. 22, no. 21, pp. 25663-25672, 2014. [19]K. Knop, “Diffraction gratings for color filtering in the zero diffraction order,” Appl. Opt., vol. 17, no. 22, pp. 3598-3603, 1978. [20]H. Dammann, “Color separation gratings,” Appl. Opt., vol. 17, no. 15, pp. 2273-2279, 1978. [21]Qi Wang, Dawei Zhang, Banglian Xu, Yuanshen Huang, Chunxian Tao, Chunfang Wang, Baicheng Li, Zhengji Ni, and Songlin Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett., vol. 36, no. 23, pp. 4698-4700, 2011. [22]Yoshiaki Kanamori, Hiroki Katsube, Tomonobu Furuta, Shoji Hasegawa, and Kazuhiro Hane, “Design and Fabrication of Structural Color Filters with Polymer-Based Guided-Mode Resonant Gratings by Nanoimprint Lithography,” Jpn. J. Appl. Phys. 48, pp. 06FH04-1-06FH04-4, 2009. [23]Mohammad Jalal Uddin, Student Member, IEEE, and Robert Magnusson, Senior Member, IEEE, “Efficient Guided-Mode-Resonant Tunable Color Filters,” IEEE Photonics Technology Letters, vol. 24, no. 17, pp. 1552-1554, 2012. [24]F. Reinitzer, “Beiträge zur Kenntnis des Cholesterins,” Monatsh. Chen., vol. 9, pp. 421-441, 1888. [25]M. Behdani, “Submicron liquid crystal pixels on a nanopatterned indium tin oxide surface,” Appl. Phys. Lett., vol. 80, no. 24, pp. 4635-4637, 2002. [26]Changhyun Pang, Jinha Hwang, Keunhee Park, Donggeun Jung, Hyoungsub Kim, and Heeyeop Chae, “Efficiency Enhancement of Polymer Solar Cells by Patterning Nanoscale Indium Tin Oxide Layer,” J. Nanosci. Nanotechnol., vol. 8, pp. 5279-5283, 2008. [27]Soowon Hwang, Hye-Jung Jin, Tae-Hoon Yoon, and Jae Chang Kim, “Homogeneous Alignment of Liquid Crystals on an Ion-Beam-Exposed Indium-Tin-Oxide Surface without Coating Alignment Layer,” Jpn. J. Appl. Phys., vol. 49, no. 12R, pp. 121702, 2010. [28]Jiyoon Kim, Jun-Hee Na, and Sin-Doo Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express, vol. 20, no. 3, pp. 3034-3042, 2012. [29]Tzu-Chieh Lin, Li-Chen Huang, Tsu-Ruey Chou, and Chih-Yu Chao, “Alignment control of liquid crystal molecules using crack induced self-assembled grooves,” Soft Matter, vol. 5, pp. 3672-3676, 2009. [30]M. Xu, H. P. Urbach, D. K. G de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express, vol. 13, no. 7, pp. 2303-2320, 2005. [31]Christoph Weder, Christian Sarwa, Andrea Montali, Cees Bastiaansen, and Paul Smith, “Incorporation of Photoluminescent Polarizers into Liquid Crystal Displays,” Science, vol. 279, pp. 835-837,1998. [32]H. Hertz, “Ueber Strahlen electrischer Kraft,” Ann. Phys., vol. 272, pp. 769-783, 1889. [33]G. R. Bird and M. Parrish, Jr., “The Wire Grid as a Near-Infrared Polarizer,” J. Opt. Soc. Am., vol. 50, no. 9, pp. 886-891, 1960. [34]Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express, vol. 15, no. 15, pp. 9510-9519, 2007. [35]T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett., vol. 6, pp. 558, 2011. [36]T. Weber, T. Käsebier, M. Helgert, E.-B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt., vol. 51, no. 16, pp. 3224-3227, 2012. [37]G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys., vol. 90, no. 8, pp. 3825-3830, 2001. [38]Bernd Schnabel, Ernst-Bernhard Kley, and Frank Wyrowski, “Study on polarizing visible light by subwavelength-period metal-stripe gratings,” Opt. Eng., vol. 38, no. 2, pp. 220-226, 1999. [39]Thomas Weber, Stefanie Kroker, Thomas Käsebier, Ernst-Bernhard Kley, and Andreas Tünnermann, “Silicon wire grid polarizer for ultraviolet applications,” Appl. Opt., vol. 53, no. 34, pp. 8140-8144, 2014. [40]T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett., vol. 36, no. 4, pp. 445-447, 2011. [41]S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, S. H. Lee, J.-D. Park, and P.-W. Yoon, “Fabrication of subwavelength aluminum wire grating using nanoimprint lithography and reactive ion etching,” Microelectronic Engineering, 78-79, pp. 314-318, 2005. [42]D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino III, and D. P. Resler, “Automated Interference Lithography Systems for Generation of Sub-Micron Feature Size Patterns,” SPIE Conference on Micromachine Technology for Diffractive and Holographic Optics, Proc. SPIE, vol. 3879, pp. 124-135, 1999. [43]N.-D. Lai, W.-P. Liang, J.-H. Lin, C.-C. Hsu and C.-H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express, vol. 13, no. 23, pp. 9605-9611, 2005. [44]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag., vol. 4, pp. 396-402, 1902. [45]S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, no. 14, pp. 2606-2613, 1993. [46]R. Magnusson and S. S. Wang, “New principle for optical filiters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992. [47]Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Topics Quantum Electron, vol. 19, pp. 1701311, 2013. [48]V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express, vol. 20, pp. 10888-10895, 2012. [49]James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express, vol. 23, no. 3, pp. 2515-2523, 2015. [50]Robert Magnusson and Mehrdad Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express, vol. 16, no. 5, pp. 3456-3462, 2008. [51]Robert Magnusson, Mehrdad Shokooh-Saremi, and Xin Wang, “Dispersion Engineering with Leaky-Mode Resonant Photonic Lattices,” Opt. Express, vol. 18, no. 1, pp. 108-116, 2009. [52]Carlos F. R. Mateus, Student Member, IEEE, Michael C. Y. Huang, Student Member, IEEE, Yunfei Deng, Andrew R. Neureuther, Fellow, IEEE, and Connie J. Chang-Hasnain, Fellow, IEEE, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 518-520, 2004. [53]Yu-Nung Lin, Yung-Jr Hung, Chia-Wei Huang and Ping-Chien Chang, “Mirror-tunable Laser Interference Lithography System for Wafer-scale Patterning with Flexible Periodicity, ” IEEE, 978-1-4799-4208, 2015. [54]Warren Booth, “How to determine your equipment needs,” Laser Focus World, vol. 46, no. 6, pp. 65-71, 2010. [55]Naoya Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am., vol. 63, no. 3, pp. 280-287, 1973. [56]M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am., vol. 72, no. 10, pp. 1385-1392, 1982. [57]M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt., vol. 17, no. 11, pp. 1757-1759, 1978. [58]M. G. Moharam, Eric B. Grann, and Drew A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A, vol. 12, no. 5, pp. 1068-1076, 1995. [59]E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J., vol. 37, no. 11, pp. 1265-1270, 2006. [60]Tomoyoshi Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt., vol. 28, no. 13, pp. 2466-2482, 1989. [61]H. Fujikake, “Advanced flexible liquid-crystal display technologies,” SPIE Newsroom, 10.1117, pp. 2.1200811.1376 page 1/3-3/3, 2008. [62]Chin-Ching Hsu and Yung-Chung Lee, Member, IEEE, “Fabrication of Flexible Nano-Wired Polarizer by Contact-transferred and Mask Embedded Lithography and Polyurethane Acrylate Mold,” IEEE, 978-1-4244-6545, pp. 893-897, 2010. [63]K. Otte, L. Makhova, A. Braun, I. Konovalov, “Flexible Cu(In,Ga)Se2 thin-film solar cells for space application,” Thin Solid Films, vol. 511-512, pp. 613-622, 2006. [64]Chia-Jen Ting, Fuh-Yu Chang, Chi-Feng Chen and C P Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18, 075001, pp. 9, 2008. [65]Yong-Seok Park, Kwang-Hyuk Choi and Han-Ki Kim, “Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics,” J. Phys. D: Appl. Phys. 42, 235109, pp. 7, 2009. [66]Andrew J. Lovinger, Karl R. Amundson, Don D. Davis, “Morphological Investigation of UV-Curable Polymer-Dispersed Liquid-Crystal (PDLC) Materials,” Chem. Mater., vol. 6, no. 10, pp. 1726-1736, 1994. [67]H. S. Jeong, H.-J. Jeon, Y. H. Kim, M. B. Oh, P. Kumar, S.-W. Kang, and H.-T. Jung, “Bifunctional ITO layer with a high resolution, surface nano-pattern for alignment and switching of LCs in device applications,” NPG Asia Materials 4, e7, 2012. [68]Anthony S. Kewitsch and Amnon Yariv, “Nonlinear optical properties of photoresists for projection lithography,” Appl. Phys. Lett., vol. 68, no. 4, pp. 455-457, 1996. [69]Drew A. Pommet, M. G. Moharam, and Eric B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A, vol. 11, no. 6, pp. 1827-1834, 1994. [70]Thomas Bu, Cameron L. C. Smith, and Anders Kristensen, “Electrically modulated transparent liquid crystal-optical grating projection,” Opt. Express, vol. 21, no. 2, pp. 1820-1829, 2013. [71]Allan S. P. Chang, Keith J. Morton, Hua Tan, Patrick F. Murphy, Wei Wu, and Stephen Y. Chou, Fellow, IEEE, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technology Letters, vol. 19, no. 19, pp. 1457-1459, 2007. [72]V. Chigrinov, A. Muravski, and H. S. Kwok, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68, 061702-1-061702-5, 2003. [73]J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl Acad. Sci. USA, vol. 111, no. 40, pp. 14348-14353, 2014. [74]D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.-T. Wu, and D. Chanda, “Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces,” Nat. Commum., 6, 7337, 2015.
|