跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡憲逸
研究生(外文):Hsien-Yi Tsai
論文名稱:新型軟切換無橋式功因校正電路
論文名稱(外文):Novel Soft-Switching Bridgeless Power Factor Correction Circuits
指導教授:陳德玉
指導教授(外文):Dan chen
口試委員:林伯仁陳鴻祺黃明熙胡國英陳耀銘呂錦山
口試日期:2011-02-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:105
中文關鍵詞:無橋式軟性切換技術零電壓切換功因校正
外文關鍵詞:bridgelessZVSsoft switchingconverterpower factor correction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:625
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之主要目的在於應用軟性切換技術於無橋式功因校正電路(Bridgeless power factor correction circuit)之研究以增進電力效率,針對單相與三相之應用,提出新型具軟性切換特性之無橋式功因校正電路。為了瞭解無橋式功因校正電路,首先探究一些既有之各式無橋式功因校正電路,瞭解各種組態之優缺點。接著,提出具軟性切換之無橋式功因校正電路,詳述其動作原理,及其功因調控。仔細分析此電路於各操作模式下之電路操作及推導其主導方程式後,從事其電路組成元件之設計,使其兩個主開關皆可達到零電壓切換(Zero voltage switch, ZVS)之特性以增進電力效率。模擬及實測結果顯示所得之軟性切換電路之軟性切換操作特性與預期者相符,且在各工作情況下,輸入電流均被調控成近乎弦波且與輸入電壓近乎同相,具有良好之功因及電流諧波特性。
再者,為改善所提電路之輔助開關切換特性,再提出除兩個主開關皆可達到零電壓切換外,其輔助開關也可達零電流切換(Zero current switch, ZCS)之無橋式功因校正電路,以便更提高效率,並詳述此電路之動作原理及其電路組成元件之設計。模擬及實測結果顯示所得之軟性切換操作特性與預期者相符。文中並提出與主開關零電壓切換、輔助開關達零電流切換之無橋式功因校正電路具相同電氣特性之族群,詳述其電路架構並比較其差異。
應用相同之概念於三相切換式整流器之研製上,本論文也提出具軟性切換之三相切換式整流電路,詳述此電路之動作原理。仔細分析此電路於整流器模式下之電路操作及推導其主導方程式後,使其主開關皆可達到零電壓切換之特性。並模擬驗證所設計電路之有效性後,即從事實作,並以一些實測結果顯示所設計電路之性能。


Power factor correction (PFC) has become almost a must for off-line power applications nowadays. Despite intensive research in the past decade, this is still a hot-research topic among power electronic field because of the “green” push for the future electric power applications. About ten years ago, there was a PFC power-stage configuration named” Bridgeless” reported. In this configuration, the diode bridge conventionally used PFC applications can be removed and therefore resulting in lower conduction power loss for the applications. The main focus of this dissertation is about soft-switching “Bridgeless” PFC (BPFC) circuits which feature improved efficiency.
In the dissertation, three classes of soft-switching BPFC circuits are proposed. The first class is a zero-voltage transition BPFC in which an assistant circuit is used to achieve soft switching in the main power switches. However, the assistant switch is still turned off by hard switching. The second class is a zero-voltage zero-current BPFC circuit in which soft switching is achieved not only for the main switches but also for the assistant switch. And the third class is an extension of the first class to a three-phase PFC circuit. Different circuit variations are also proposed to the above three classes.
Computer simulations and experimental results are presented in the dissertation. Design guidance is also included. Improvements of efficiencies, compared to conventional hard-switching circuits are in the range of one to two percentage points which is a significant improvement.


CONTENTS

誌謝…………………………………………………………… I
中文摘要…………………………………………………………… II
Abstract…………………………………………………………… III
Contents…………………………………………………………… IV
List of Figures………………………………………………… VI
List of Tables…………………………………………………… IX
Chapter 1 Introduction………………………………………… 1
1.1 Motivation………………………………………… 1
1.2 Contributions of this Dissertation…………………… 4
1.3 Organization of the Dissertation……………………… 5
Chapter 2 Bridgeless PFC Circuit and Soft Switching Technique 7
2.1 Introduction…………………………………………… 7
2.2 Conventional PFC boost circuit…………………… 7
2.3 Bridgeless PFC boost circuit………………………… 10
2.3.1 Operation of the conventional bridgeless PFC circuit 10
2.3.2 EMI issue of the conventional bridgeless PFC circuit … 12
2.3.3 Variation of the bridgeless PFC circuits………… 12
2.4 Soft switching techniques……………………………… 16
2.4.1 Load resonant converters…………………………… 18
2.4.2 Quasi-resonant converters…………………………… 18
2.4.3 Zero-switching PWM converters…………………… 22
2.4.4 Zero-transition PWM converters…………………… 22
2.5 Three-phase soft switching converters……………… 27
Chapter 3 A Novel Soft-Switching Bridgeless PFC Circuit……… 33
3.1 Introduction………………………………………………… 33
3.2 Description of the proposed ZVT bridgeless PFC circuit…… 33
3.3 Components selection and circuit design…………… 40
3.3.1 Selection of Sa, Sb, and Sr……………………… 40
3.3.2 Selection of Da, Db, Dra, Drb and Dr……………… 40
3.3.3 Selection of boost inductors, and output capacitors…… 41
3.3.4 Selection of Lr and Csa, Csb…………………… 41
3.3.5 Gate drive delay time of the auxiliary switch Sr 41
3.3.6 Description and design of controller circuit…… 41
3.4 Experimental Verifications……………………………… 43
3.5 Extension topologies……………………………………… 46
3.6 Summary ……………………………………………………… 46
Chapter 4 ZVT Bridgeless PFC Circuits with ZCS ……………………………………………………… 48
4.1 Introduction……………………………………………… 48
4.2 Description of the proposed ZV-ZCT bridgeless PFC circuit… 48
4.3 Components selection and design guidance ………… 56
4.4 Experimental results……………………………………… 61
4.5 Topology Extensions……………………………………… 67
4.6 Summary………………………………………………… 68
Chapter 5 A Novel ZVT Three-Phase PFC Circuit with Reduced Conduction Loss………………………… 71
5.1 Introduction………………………………………………… 71
5.2 Review of a three-phase PFC circuit………………… 71
5.3 A proposed three-phase ZVT PFC circuit……………… 76
5.4 Components selection and circuit design……………………… 83
5.5 Experimental Verifications……………………………… 84
5.6 A proposed ZVT-ZCS PFC circuit………………………… 90
5.7 Summary ……………………………………………………… 93
Chapter 6 Conclusions and Suggestions for Future Research 94
6.1 Conclusions………………………………………………… 94
6.2 Suggested Future Researches…………………………… 95
Reference…………………………………………………………. 97
Biographical Note……………………………………………… 103



[1]B. Kampfle, “Comments on draft 1 version 2.0 Energy star external power supplies specification,” Energy star, U.S. Environmental Protection Agency, 2007.
[2]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 2nd ed. New York: Wiley, 1995.
[3]L. Cividino, “Power factor, harmonic distortion; causes, effects and considerations,” IEEE International Telecommunication Energy Conference, pp. 506-513, 1992.
[4]P. N. Enjeti and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Applied Power Electronics Conference, pp. 190 – 195, 1993.
[5]J. Sebastian, M. Jaureguizar, and M. Uceda, “Overview of power factor correction in single-phase off-line power supply systems,” IEEE Industrial Electronics Conference, pp.1688-1693, 1994.
[6]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” IEEE Southeastcon Conference, pp. 348-353, 1998.
[7]K. C. Lee, H. S. Choi, and B. H. Cho, “Power factor correction converter using delay control,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 626-633, 2000.
[8]B. Choi, S. S. Hong, and H. Park, “Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 136-142, 2001.
[9]Z. Jindong, S. Jianwen, X. Peng, F. C. Lee, and M. M. Jovanovic, “Evaluation of input current in the critical mode boost PFC converter for distributed power systems,” IEEE Applied Power Electronics Conference, vol. 1,pp. 130-136, 2001.
[10]M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview,” IEEE Transactions on Industrial Electronics, pp. 701-708, 2005.
[11]P. C. S. Ficagna and J. R. Pinheiro, ”DCM/CCM isolated PFC single-stage AC/DC converter,” IEEE Power Electronics Conference, pp. 641-647, 2009.
[12]F. Beltrame, L. Roggia, L. Schuch, J. R. Pinheiro, “A comparison of high power single-phase power factor correction pre-regulators,” IEEE Industrial Technology International Conference, pp. 625-630, 2010.
[13]D. M. Mitchell, “AC-DC Converter having an improved power factor,” U.S. Patent 4,412,277, Oct. 25, 1983.
[14]U. Moriconi, “A bridgeless P.F.C. configuration based on L4981 P.F.C. controller, ”ST Microelectronics Application Notes AN1606.
[15]B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC implementation using one cycle control technique,” IEEE Applied Power Electronics Conference, vol. 2, pp.812 - 817, 2005.
[16]T. J. Liang, S. C. Kang, C. A. Cheng, R. L. Lin, and J. F. Chen, “Analysis and design of single-stage electronic ballast with bridgeless PFC configuration,” IEEE Industrial Electronics Society Conference, pp. 502-508, 2003.
[17]L. Huber, Y. Jang, and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, pp. 1381-1390, 2008.
[18]W. Wang, H. P. Liu, S. Jiang, and D. Xu, “A novel bridgeless buck-boost PFC converter,” IEEE Power Electronics Specialists Conference, pp.1304-1308, 2008.
[19]A. F. Souza and I. Barbi, “A new ZVS-PWM unity power factor rectifier with reduced conduction losses,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp.746 – 752, 1995.
[20]Hsien-Yi Tsai, Tsun-Hsiao Hsia, and Dan Chen, “A novel soft-switching bridgeless power factor correction circuit,” European Power Electronics and Applications Conference, pp. 1-10, 2007.
[21]C. M. Wang, “A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 427-435, 2005.
[22]C. M. Wang, “A novel ZCS-PWM power-factor pre-regulator with reduced conduction losses,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 689-700, 2005.
[23]W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee and B. H. Kwon, ”Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Transactions on Industrial Electronics, vol.54, pp. 769- 780, 2007.
[24]R. Oruganti and F. C. Lee, “Resonant power processors Part I : state plane analysis,” IEEE Transaction on IA, pp. 1453-1461, 1985.
[25]R. L. Steigerwald, “High Frequency Resonant Transistor DC-DC Converters,” IEEE Transactions on Industrial Electronics, vol. 31, no. 2, pp.181-191, 1984.
[26]R. Oruganti and F. C. Lee, “State-plane analysis of parallel resonant converters,” IEEE Power Electronics Specialists Conference, pp.56-73, 1985.
[27]H. Pollock, “Constant frequency, constant current load-resonant capacitor charging power supply,” IEE Transaction on Electric Power Applications, pp. 187-192, 1999.
[28]B. Yang, F. C. Lee, and A. J. Zhang, G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Applied Power Electronics Conference, vol. 2, pp.1108-1112, 2002.
[29]F. C. Lee, “High-frequency quasi-resonant and multi-resonant converter technologies,” IEEE Transaction on Industrial Electronics, pp. 509-521, 1988.
[30]K. H. Liu and F. C. Lee, “Resonant switches – a unified approach to improve performances of switching converters,” IEEE International Telecommunication Energy Conference, pp. 344-315, 1984.
[31]K. H. Liu, R. Oruganti, and F.C. Lee, “Resonant switches – topologies and characteristics,” IEEE Power Electronics Specialists Conference, pp.62-67, 1985.
[32]R. Zhao, J. Pan, and J. Hui, “A novel soft-switching boost PFC with a passive snubber,” IEEE Industrial Electronics and Applications Conference, pp. 1473-1476, 2007.
[33]K. Fujiwara and H. Nomura, “A novel lossless passive snubber for soft-switching boost-type converters,” IEEE Transactions on Power Electronics, vol. 14, no. 6, pp. 1065-1069, 1999.
[34]W. A. Tabisz, P. Gradzki, and F. C. Lee, “Zero-voltage-switched quasi-resonant buck and flyback converter-Experimental results at 10 MHz,” IEEE Transaction on Power Electronics, vol. 4, no. 2, pp. 194-204, 1989.
[35]G. Hua and F. C. Lee, “Soft-switching techniques in PWM converter,” IEEE Transaction on Industrial Electronics, vol. 42, no. 6, pp. 595-603, 1995.
[36]H. Sugimura, S. Sumiyoshi, H. Omori, S. P. Mun, S. K. Kwon, and M. Nakaoka, “A novel one stage ZVS-PWM high frequency resonant inverter with boost single diode conducting mode passive ZCS-PFC scheme,” IEEE Industrial Electronics Conference, pp. 495-501, 2008.
[37]K. H. Liu, F. C. Lee, “Zero-voltage-switching techniques in dc/dc converter circuits,” IEEE Power Electronics Specialists Conference, pp.58-70, 1986.
[38]W. A. Tabisz, F. C. Lee, “Zero-voltage-switching multi-resonant technique-a novel approach to improve performance of high frequency quasi-resonant converters,” IEEE Power Electronics Specialists Conference, pp.9-17, 1988.
[39]W. A. Tabisz and F. C. Lee, “Dc analysis and design of zero-voltage-switching multi-resonant converter,” IEEE Power Electronics Specialists Conference, pp.243-251, 1989.
[40]R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge DCDC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” IEEE Transaction on Power Electronics, vol. 6, no. 3, pp. 408-418, 1991.
[41]X. B. Ruan, Y.Y. Yan, “An improved phase-shifted zero-voltage-and zero-current switching pwm converter,” IEEE Industrial Electronics and Applications Conference, pp.811-815, 1998.
[42]Q. M. Li and F. C. Lee, “Design consideration of the active clamp forward converter with current mode control during large signal transient,” IEEE Transactions on Power Electronics, vol.18, no. 4, pp.958-965, 2003.
[43]G. Moschopoulos, P. K. Jain, Y. F. Liu, and G. Joos, “A zero-voltage-switched PWM boost converter with an energy feed-forward auxiliary circuit,” IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 653-662, 1999.
[44]Guichao Hua, Ching-Shan Leu, Yimin Jiang, and F. C. Lee, “Novel zero-voltage-transition PWM converter,” IEEE Transactions on Power Electronics, vol. 9, pp. 213-219, 1994.
[45]G. Hua, E. X. Yang, Y. M. Jiang, and F. C. Lee, “Novel zero-current-transition PWM converter,” IEEE Transactions on Power Electronics, vol. 9, pp. 601-606, 1994.
[46]J. G. Cho, J. W. Baek, D. W. Yoo, and H. S. Lee, “Reduced conduction loss zero-voltage-transition power factor correction converter with low cost,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 395-400, 1998.
[47]Y. H. Kim and K. S. Park, “A high-efficiency soft switching zero-voltage-transition converter using combined inductor energy recovery circuits,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 712-717, 2001.
[48]Y. Jang, M. M. Jovanovic, Kung-Hui Fang, and Y. M. Chang, “High-Power-Factor Soft-switched Boost Converter,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp.98 – 104, 2006.
[49]M. S. Dawande and G. K. Dupal, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Transactions on Power Electronics, vol.11, no. 4, pp. 585-591, 1996.
[50]P. Ide, N. Froehleke, and H. Grotstollen, “Comparison of selected 3-phase switched mode rectifiers,” IEEE International Telecommunication Energy Conference, pp. 630-636, 1997.
[51]M. Hengchun, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Transactions on Industrial Electronics, vol. 44 ,pp. 437-446, 1997.
[52]J. C. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp.456-467, 1997.
[53]B. R. Lin and H. H. Lu, “Single-phase power-factor-correction AC/DC converters with three PWM control schemes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp.189-200, 2000.
[54]G. Z. Chen and K. M. Smedley, “Steady-State and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 355-362, 2005.
[55]C. M. Qiao and K. M Smedley, “Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power-factor correction,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 100-107, 2003.
[56]Y. Jiang, H. Mao, F. C. Lee, D. Borojevic, “Simple high performance three-phase boost rectifiers,” IEEE Power Electronics Specialists Conference, vol.2, pp. 1158-1163, 1994.
[57]G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor- correction circuits in three-phase applications,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 365-371, 1997.
[58]S. H. Li, H. Y. Tsai, and C. M. Liaw, “Three-phase switch-mode rectifier constructed using single-phase modules,” IEEE International Telecommunication Energy Conference, pp.2003-2006, 2002.
[59]蔡憲逸,以單相單模組配接之三相軟性切換式整流器,碩士論文,國立清華大學電機工程研究所, 2001.
[60]D. M. Divan, “The resonant dc-link converter- a new concept in power conversion,” IEEE Industry Applications Society Conference, pp. 648-656, 1986.
[61]D. M. Divan and G. Skibinski, “Zero switching loss inverters for high power applications,” IEEE Industry Applications Society Conference, pp. 627-634, 1987.
[62]R. W. De Doncker and J.P. Lyons, “The auxiliary commutated resonant pole converters,” IEEE Industry Applications Society Conference, pp. 1228-1235, 1990.
[63]V. Vlatkovic, D. Borojevic, F. C. Lee, C. Cuadros, and S. Gataric, “A new zero-voltage transition, three-phase PWM rectifier/inverter circuit,” IEEE Power Electronics Specialists Conference, pp. 868-873, 1993.
[64]C. Cuadros, D. Borojevic, S. Gataric, and V. Vlatkovic, “Space vector modulated, zero-voltage transition three-phase to dc bidirectional converter,” IEEE Power Electronics Specialists Conference, pp. 16-24, 1994.
[65]Q. Li, X. Zhou, and F. C. Lee, “A novel ZVT three-phase rectifier/inverter with reduced auxiliary switch stresses and losses,” IEEE Power Electronics Specialists Conference, pp. 153-158, 1996.
[66]S. Gataric, D. Borojeviv, and F. C. Lee, ” Soft-switched three-phase rectifier with power factor correction,” IEEE Power Electronics Specialists Conference, pp. 738-744, 1994.
[67]S. Y. R. Hui, Y. K. E. Ho, and H. Chung, “Modular single-stage, three-phase full-bridge converter with inherent power factor correction and isolated,” IEE Processing of Power Electronic Applications, vol. 143 no. 4, pp. 407-414, 1999.
[68]B. N. Singh, P. Jain, and G. Joos, “Three-phase AC/DC regulated power supplies: a comparative evaluation of different topologies,” IEEE Applied Power Electronics Conference, vol. 1, pp. 513-528, 2000.
[69]F. S. Hamdad and A. K. S. Bhat, “A three-phase single-stage AC/DC boost integrated series resonant converter,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1253-1258, 2000.
[70]D. Xu and B. Feng, "Novel ZVS three-phase PFC converters and zero-voltage-switching space vector modulation," IEEE Power Electronics Specialists Conference, pp.222– 229, 2004.
[71]B. Feng, D. Xu, W. Wang, J. Xu, “A novel zero voltage switching SVM (ZVS-SVM) controlled three phase boost rectifier,” IEEE Applied Power Electronics Conference, pp. 642-647, 6-10, 2005.
[72]Y. Jang and M. M. Jovanovic, “Fully soft-switched three-stage AC–DC converter,” IEEE Transactions on Power Electronics, vol. 23, pp. 2884-2892, 2008.
[73]Rui Li, K. Ma, and Dehong Xu, “A novel 40KW ZVS-SVM controlled three-phase boost PFC converter,“ IEEE Applied Power Electronics Conference and Exposition, pp. 376-382, 2009.
[74]D. Wijeratne and G. Moschopoulos, “A simple three-phase single-stage ac-dc ZVZCS full bridge converter,” IEEE Energy Conversion Congress and Exposition, pp.1220-1227, 2009.
[75]J. G. Cho, H. S. Kim, and G. H. Cho, “Novel soft-switching PWM converter using a parallel resonant dc-link,” in Proc. IEEE PESC’91, pp. 241-247, 1991
[76]L. Malesami, P. Tenti, P. Tomasin, and V. Toigo, “High efficiency quasi resonant dc-link converter for full-range PWM,” IEEE Applied Power Electronics Conference, pp. 472-478, 1992.
[77]B. Feng, D. Xu, W. Wang, J. Xu,” A novel zero voltage switching SVM (ZVS-SVM) controlled three phase boost rectifier,” IEEE Applied Power Electronics Conference, pp. 642-647, 6-10, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊