|
[1]B. Kampfle, “Comments on draft 1 version 2.0 Energy star external power supplies specification,” Energy star, U.S. Environmental Protection Agency, 2007. [2]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 2nd ed. New York: Wiley, 1995. [3]L. Cividino, “Power factor, harmonic distortion; causes, effects and considerations,” IEEE International Telecommunication Energy Conference, pp. 506-513, 1992. [4]P. N. Enjeti and R. Martinez, “A high performance single phase AC to DC rectifier with input power factor correction,” IEEE Applied Power Electronics Conference, pp. 190 – 195, 1993. [5]J. Sebastian, M. Jaureguizar, and M. Uceda, “Overview of power factor correction in single-phase off-line power supply systems,” IEEE Industrial Electronics Conference, pp.1688-1693, 1994. [6]W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” IEEE Southeastcon Conference, pp. 348-353, 1998. [7]K. C. Lee, H. S. Choi, and B. H. Cho, “Power factor correction converter using delay control,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 626-633, 2000. [8]B. Choi, S. S. Hong, and H. Park, “Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 136-142, 2001. [9]Z. Jindong, S. Jianwen, X. Peng, F. C. Lee, and M. M. Jovanovic, “Evaluation of input current in the critical mode boost PFC converter for distributed power systems,” IEEE Applied Power Electronics Conference, vol. 1,pp. 130-136, 2001. [10]M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview,” IEEE Transactions on Industrial Electronics, pp. 701-708, 2005. [11]P. C. S. Ficagna and J. R. Pinheiro, ”DCM/CCM isolated PFC single-stage AC/DC converter,” IEEE Power Electronics Conference, pp. 641-647, 2009. [12]F. Beltrame, L. Roggia, L. Schuch, J. R. Pinheiro, “A comparison of high power single-phase power factor correction pre-regulators,” IEEE Industrial Technology International Conference, pp. 625-630, 2010. [13]D. M. Mitchell, “AC-DC Converter having an improved power factor,” U.S. Patent 4,412,277, Oct. 25, 1983. [14]U. Moriconi, “A bridgeless P.F.C. configuration based on L4981 P.F.C. controller, ”ST Microelectronics Application Notes AN1606. [15]B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC implementation using one cycle control technique,” IEEE Applied Power Electronics Conference, vol. 2, pp.812 - 817, 2005. [16]T. J. Liang, S. C. Kang, C. A. Cheng, R. L. Lin, and J. F. Chen, “Analysis and design of single-stage electronic ballast with bridgeless PFC configuration,” IEEE Industrial Electronics Society Conference, pp. 502-508, 2003. [17]L. Huber, Y. Jang, and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, pp. 1381-1390, 2008. [18]W. Wang, H. P. Liu, S. Jiang, and D. Xu, “A novel bridgeless buck-boost PFC converter,” IEEE Power Electronics Specialists Conference, pp.1304-1308, 2008. [19]A. F. Souza and I. Barbi, “A new ZVS-PWM unity power factor rectifier with reduced conduction losses,” IEEE Transactions on Power Electronics, vol. 10, no. 6, pp.746 – 752, 1995. [20]Hsien-Yi Tsai, Tsun-Hsiao Hsia, and Dan Chen, “A novel soft-switching bridgeless power factor correction circuit,” European Power Electronics and Applications Conference, pp. 1-10, 2007. [21]C. M. Wang, “A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 427-435, 2005. [22]C. M. Wang, “A novel ZCS-PWM power-factor pre-regulator with reduced conduction losses,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 689-700, 2005. [23]W. Y. Choi, J. M. Kwon, E. H. Kim, J. J. Lee and B. H. Kwon, ”Bridgeless boost rectifier with low conduction losses and reduced diode reverse-recovery problems,” IEEE Transactions on Industrial Electronics, vol.54, pp. 769- 780, 2007. [24]R. Oruganti and F. C. Lee, “Resonant power processors Part I : state plane analysis,” IEEE Transaction on IA, pp. 1453-1461, 1985. [25]R. L. Steigerwald, “High Frequency Resonant Transistor DC-DC Converters,” IEEE Transactions on Industrial Electronics, vol. 31, no. 2, pp.181-191, 1984. [26]R. Oruganti and F. C. Lee, “State-plane analysis of parallel resonant converters,” IEEE Power Electronics Specialists Conference, pp.56-73, 1985. [27]H. Pollock, “Constant frequency, constant current load-resonant capacitor charging power supply,” IEE Transaction on Electric Power Applications, pp. 187-192, 1999. [28]B. Yang, F. C. Lee, and A. J. Zhang, G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE Applied Power Electronics Conference, vol. 2, pp.1108-1112, 2002. [29]F. C. Lee, “High-frequency quasi-resonant and multi-resonant converter technologies,” IEEE Transaction on Industrial Electronics, pp. 509-521, 1988. [30]K. H. Liu and F. C. Lee, “Resonant switches – a unified approach to improve performances of switching converters,” IEEE International Telecommunication Energy Conference, pp. 344-315, 1984. [31]K. H. Liu, R. Oruganti, and F.C. Lee, “Resonant switches – topologies and characteristics,” IEEE Power Electronics Specialists Conference, pp.62-67, 1985. [32]R. Zhao, J. Pan, and J. Hui, “A novel soft-switching boost PFC with a passive snubber,” IEEE Industrial Electronics and Applications Conference, pp. 1473-1476, 2007. [33]K. Fujiwara and H. Nomura, “A novel lossless passive snubber for soft-switching boost-type converters,” IEEE Transactions on Power Electronics, vol. 14, no. 6, pp. 1065-1069, 1999. [34]W. A. Tabisz, P. Gradzki, and F. C. Lee, “Zero-voltage-switched quasi-resonant buck and flyback converter-Experimental results at 10 MHz,” IEEE Transaction on Power Electronics, vol. 4, no. 2, pp. 194-204, 1989. [35]G. Hua and F. C. Lee, “Soft-switching techniques in PWM converter,” IEEE Transaction on Industrial Electronics, vol. 42, no. 6, pp. 595-603, 1995. [36]H. Sugimura, S. Sumiyoshi, H. Omori, S. P. Mun, S. K. Kwon, and M. Nakaoka, “A novel one stage ZVS-PWM high frequency resonant inverter with boost single diode conducting mode passive ZCS-PFC scheme,” IEEE Industrial Electronics Conference, pp. 495-501, 2008. [37]K. H. Liu, F. C. Lee, “Zero-voltage-switching techniques in dc/dc converter circuits,” IEEE Power Electronics Specialists Conference, pp.58-70, 1986. [38]W. A. Tabisz, F. C. Lee, “Zero-voltage-switching multi-resonant technique-a novel approach to improve performance of high frequency quasi-resonant converters,” IEEE Power Electronics Specialists Conference, pp.9-17, 1988. [39]W. A. Tabisz and F. C. Lee, “Dc analysis and design of zero-voltage-switching multi-resonant converter,” IEEE Power Electronics Specialists Conference, pp.243-251, 1989. [40]R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge DCDC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” IEEE Transaction on Power Electronics, vol. 6, no. 3, pp. 408-418, 1991. [41]X. B. Ruan, Y.Y. Yan, “An improved phase-shifted zero-voltage-and zero-current switching pwm converter,” IEEE Industrial Electronics and Applications Conference, pp.811-815, 1998. [42]Q. M. Li and F. C. Lee, “Design consideration of the active clamp forward converter with current mode control during large signal transient,” IEEE Transactions on Power Electronics, vol.18, no. 4, pp.958-965, 2003. [43]G. Moschopoulos, P. K. Jain, Y. F. Liu, and G. Joos, “A zero-voltage-switched PWM boost converter with an energy feed-forward auxiliary circuit,” IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 653-662, 1999. [44]Guichao Hua, Ching-Shan Leu, Yimin Jiang, and F. C. Lee, “Novel zero-voltage-transition PWM converter,” IEEE Transactions on Power Electronics, vol. 9, pp. 213-219, 1994. [45]G. Hua, E. X. Yang, Y. M. Jiang, and F. C. Lee, “Novel zero-current-transition PWM converter,” IEEE Transactions on Power Electronics, vol. 9, pp. 601-606, 1994. [46]J. G. Cho, J. W. Baek, D. W. Yoo, and H. S. Lee, “Reduced conduction loss zero-voltage-transition power factor correction converter with low cost,” IEEE Transactions on Industrial Electronics, vol. 45, no. 3, pp. 395-400, 1998. [47]Y. H. Kim and K. S. Park, “A high-efficiency soft switching zero-voltage-transition converter using combined inductor energy recovery circuits,” IEEE International Symposium on Industrial Electronics, vol. 2, pp. 712-717, 2001. [48]Y. Jang, M. M. Jovanovic, Kung-Hui Fang, and Y. M. Chang, “High-Power-Factor Soft-switched Boost Converter,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp.98 – 104, 2006. [49]M. S. Dawande and G. K. Dupal, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Transactions on Power Electronics, vol.11, no. 4, pp. 585-591, 1996. [50]P. Ide, N. Froehleke, and H. Grotstollen, “Comparison of selected 3-phase switched mode rectifiers,” IEEE International Telecommunication Energy Conference, pp. 630-636, 1997. [51]M. Hengchun, C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Transactions on Industrial Electronics, vol. 44 ,pp. 437-446, 1997. [52]J. C. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp.456-467, 1997. [53]B. R. Lin and H. H. Lu, “Single-phase power-factor-correction AC/DC converters with three PWM control schemes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp.189-200, 2000. [54]G. Z. Chen and K. M. Smedley, “Steady-State and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 355-362, 2005. [55]C. M. Qiao and K. M Smedley, “Unified constant-frequency integration control of three-phase standard bridge boost rectifiers with power-factor correction,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 100-107, 2003. [56]Y. Jiang, H. Mao, F. C. Lee, D. Borojevic, “Simple high performance three-phase boost rectifiers,” IEEE Power Electronics Specialists Conference, vol.2, pp. 1158-1163, 1994. [57]G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor- correction circuits in three-phase applications,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 365-371, 1997. [58]S. H. Li, H. Y. Tsai, and C. M. Liaw, “Three-phase switch-mode rectifier constructed using single-phase modules,” IEEE International Telecommunication Energy Conference, pp.2003-2006, 2002. [59]蔡憲逸,以單相單模組配接之三相軟性切換式整流器,碩士論文,國立清華大學電機工程研究所, 2001. [60]D. M. Divan, “The resonant dc-link converter- a new concept in power conversion,” IEEE Industry Applications Society Conference, pp. 648-656, 1986. [61]D. M. Divan and G. Skibinski, “Zero switching loss inverters for high power applications,” IEEE Industry Applications Society Conference, pp. 627-634, 1987. [62]R. W. De Doncker and J.P. Lyons, “The auxiliary commutated resonant pole converters,” IEEE Industry Applications Society Conference, pp. 1228-1235, 1990. [63]V. Vlatkovic, D. Borojevic, F. C. Lee, C. Cuadros, and S. Gataric, “A new zero-voltage transition, three-phase PWM rectifier/inverter circuit,” IEEE Power Electronics Specialists Conference, pp. 868-873, 1993. [64]C. Cuadros, D. Borojevic, S. Gataric, and V. Vlatkovic, “Space vector modulated, zero-voltage transition three-phase to dc bidirectional converter,” IEEE Power Electronics Specialists Conference, pp. 16-24, 1994. [65]Q. Li, X. Zhou, and F. C. Lee, “A novel ZVT three-phase rectifier/inverter with reduced auxiliary switch stresses and losses,” IEEE Power Electronics Specialists Conference, pp. 153-158, 1996. [66]S. Gataric, D. Borojeviv, and F. C. Lee, ” Soft-switched three-phase rectifier with power factor correction,” IEEE Power Electronics Specialists Conference, pp. 738-744, 1994. [67]S. Y. R. Hui, Y. K. E. Ho, and H. Chung, “Modular single-stage, three-phase full-bridge converter with inherent power factor correction and isolated,” IEE Processing of Power Electronic Applications, vol. 143 no. 4, pp. 407-414, 1999. [68]B. N. Singh, P. Jain, and G. Joos, “Three-phase AC/DC regulated power supplies: a comparative evaluation of different topologies,” IEEE Applied Power Electronics Conference, vol. 1, pp. 513-528, 2000. [69]F. S. Hamdad and A. K. S. Bhat, “A three-phase single-stage AC/DC boost integrated series resonant converter,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1253-1258, 2000. [70]D. Xu and B. Feng, "Novel ZVS three-phase PFC converters and zero-voltage-switching space vector modulation," IEEE Power Electronics Specialists Conference, pp.222– 229, 2004. [71]B. Feng, D. Xu, W. Wang, J. Xu, “A novel zero voltage switching SVM (ZVS-SVM) controlled three phase boost rectifier,” IEEE Applied Power Electronics Conference, pp. 642-647, 6-10, 2005. [72]Y. Jang and M. M. Jovanovic, “Fully soft-switched three-stage AC–DC converter,” IEEE Transactions on Power Electronics, vol. 23, pp. 2884-2892, 2008. [73]Rui Li, K. Ma, and Dehong Xu, “A novel 40KW ZVS-SVM controlled three-phase boost PFC converter,“ IEEE Applied Power Electronics Conference and Exposition, pp. 376-382, 2009. [74]D. Wijeratne and G. Moschopoulos, “A simple three-phase single-stage ac-dc ZVZCS full bridge converter,” IEEE Energy Conversion Congress and Exposition, pp.1220-1227, 2009. [75]J. G. Cho, H. S. Kim, and G. H. Cho, “Novel soft-switching PWM converter using a parallel resonant dc-link,” in Proc. IEEE PESC’91, pp. 241-247, 1991 [76]L. Malesami, P. Tenti, P. Tomasin, and V. Toigo, “High efficiency quasi resonant dc-link converter for full-range PWM,” IEEE Applied Power Electronics Conference, pp. 472-478, 1992. [77]B. Feng, D. Xu, W. Wang, J. Xu,” A novel zero voltage switching SVM (ZVS-SVM) controlled three phase boost rectifier,” IEEE Applied Power Electronics Conference, pp. 642-647, 6-10, 2005.
|