跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃盈瑞
研究生(外文):Ying-Jui Huang
論文名稱:具貼壁式與非貼壁式加熱凸塊
論文名稱(外文):Entropy Generation Analysis of Channel Flow with Wall-Attached and -Detached Heated Blocks
指導教授:洪振益洪振益引用關係
指導教授(外文):C. I. Hung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:99
中文關鍵詞:熵產生加熱凸塊渠道流熱傳係數摩擦係數
外文關鍵詞:entropy generationheated blockchannel flowheat transfer coefficientfriction coefficient
相關次數:
  • 被引用被引用:1
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文主要是要以熱力學第二定律---熵產生(Entropy generation)的觀點並結合局部(平均)紐塞數和摩擦係數的數值計算,去探討不可壓縮層流流體,流經具有交錯、對稱排列、貼壁式加熱凸塊或是非貼壁式加熱凸塊之渠道,其流場、壁面熱傳和其摩擦係數的影響。而其統御方程式乃是以有限體積法(Finite Volume Method)為基礎,配合有限元素法(Finite Element Method)。至於格點設計方面,在本文中則採用非交錯網格(no-stagger grid or collocation)的系統去解Navier-Stokes方程式。
並針對下列的參數作探討:(1)入口雷諾數(Re),(2)凸塊高度與渠道高度比(H/2B),(3)交錯排列時凸塊與凸塊的交錯間距比(S/H),(4)非貼壁排列時,凸塊與壁面的間隙比(C/H)。探討其對流場與熱傳所造成的影響。而工作介質則採用空氣。
在渠道中加裝凸塊,主要乃是在改變渠道之流場型態,並藉由增加熱傳面積,使流體與壁面有更激烈之交互作用進而去增加熱傳效率,但是相對於此效應,流場之摩擦損失通常亦會增加,所以要如何在減少摩擦損失及增加熱傳之間達成平衡,使其有最佳效率是我們探討的重點。
至於加熱流場,則分別是在凸塊表面保持固定壁溫,進行預測其熱傳係數的分佈狀況與物理現象。

Abstract
This study main employ “Second Law of Thermodynamics (Entropy generation)“viewpoint and Local (Average) Nusselt number to analysis the effects of incompressible laminar channel flow fluid, wall heat transfer characteristics and friction coefficient with Wall-Attached and Wall-Detached Heated Blocks and staggered or in-line blocks.
The governing equations are solved by a Finite-volume-based Finite-Element method .In this study, no-stagger grid or collocation are used to solve the Navier-Stokes equations.
The parameters interested include (1) entrance Reynolds number (Re), (2) the ratio of block height to channel height (H/2B), (3) the distance between two blocks staggered (S/H), (4) the ratio of interval (blocks detached from wall) to channel height (C/H).
Moreover, the enhancement in heat transfer is accompanied with increase in the friction loss to fluid flow. The reduce friction loss and increase heat transfer reach balance. We suppose to discuss the optimum efficient.
For a heated flow field, a constant heated wall temperature is considered along blocks. The distributions of heat transfer coefficient and the physical phenomena of this flow field are presented.

目錄
摘要I
AbstractII
誌謝III
目錄IV
表目錄VII
圖目錄IX
符號說明XVI
第一章、緒論1
1-1 研究動機及背景1
1-2 文獻回顧4
1-3 研究方法與目的6
1-4 本文架構7
第二章 理論分析13
2-1 基本假設13
2-2 統御方程式14
2-3 無因次化分析15
2-4 理論依據與公式推導16
2-4-1 熵產生(Entropy generation)16
2-4-2 摩擦係數(Friction coefficient)17
2-4-3 局部紐塞數(Local Nusselt number)18
2-4-4 平均紐塞數(Average Nusselt number)18
第三章 數值模擬21
3-1 數值方法21
3-1-1 統御方程式21
3-1-2 控制體積22
3-1-3 離散化24
3-1-4 壓力項與擴散項的處理25
3-1-5 數值通量的計算26
3-1-6 非交錯網格27
3-2 邊界條件28
第四章 結果與討論36
4-1 具對稱排列凸塊之渠道流分析36
4-1-1 貼壁式加熱凸塊,凸塊高度與渠道高度比(H/2B)之影響36
4-1-2 貼壁式加熱凸塊,凸塊寬度與凸塊高度比(W/H)之影響39
4-1-3 非貼壁加熱凸塊,凸塊間隙與凸塊高度比(C/H)之影響41
4-1-4 全非貼壁式加熱凸塊,凸塊間隙與凸塊高度比(C/H)之影響45
4-2 具交錯排列凸塊之渠道流分析47
4-2-1 非貼壁式加熱凸塊,交錯間距與凸塊高度比(S/H)之影響47
第五章 結論與建議90
5-1 結論90
5-2 建議93
參考文獻94
自述99
著作權聲明99

參考文獻
[1] Bar-Cohen, A. and Kraus, A. D., Advances in thermal Modeling of Electronic Components and Systems, ASME Press, New York, 1990.
[2] R. A. Wirtz and W. McAuliffe, ”Experiment Modeling of Convection Downstream From An Electronic Package Row ,” J. of Electronic Packing,, Vol. 111, 1989, pp207-212.
[3] Burgraf, F., Experiment Heat Transfer and Pressure Drop with Two-Dimensional Turbulence Promoter Applied to Two Opposite Walls of a Square Tube, Augmentation of Convection Heat and Mass Transfer, edited by A. E. Bergles and R. L. Webb, ASME, New York, N. Y., pp. 70-79.
[4] Han, J., C., L. R. Glicksman, and W. M. Rohsenow, An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces, Int. J. Heat Mass Transfer, Vol. 21, pp 1143-1156, 1978.
[5] Han, J. C., Heat Transfer and Friction in Channels with Two Opposite Rib-Roughened Walls, J. Heat Transfer, Vol. 106 , pp 774-781 , 1984.
[6] Han, J. C., J.S. Park, and C. K. Lei, “Heat Transfer Enhancement in Channel with Turbulence Promoters,” J. Eng. Gas. Trubines Power, Vol.107, pp628-635,1985.
[7] Liou T. M., Hwang, D. G., and Kao, C. F., Computations of Turbulent Flow and Heat Transfer Enhancement in Channel With a Pair of Turbulence Promoters, 3rd International Symposium on Transport Phenomena in Thermal Control, Taiwan, 1988.
[8] Liou, T. M., Kao, C. F., Symmetric and Asymmetric Flow in Rectangular Duct With a Pair of Ribs, ASME Journal of Fluids Engineering, Vol. 110, pp. 373-379.,1988.
[9] Liou, T. M., Liou, J. , Measurements of Turbulent Flow in a Duct With Repeated Ribs Applied to Two Opposite Walls, Journal of the Chinese Institute of Engineers, Vol. 11, No. 4, pp. 319-326, 1988.
[10] Liou, T. M. Hwang, J. J., Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows, ASME Journal of Heat Transfer, Vol. 114, pp 56-64,1992.
[11] Sato H., Hishida K., Maeda M., Characteristics of Turbulent Flow and Heat Transfer in a Rectangular Channel with Rib Roughness, Experiment Heat Transfer, Vol.5, pp 1-16,1992.
[12] Bunditkful S., Yang W. J., 1981, Laminar Transport Phenomena in Parallel Channel with a Short Flow Obstruction, ASME Journal of Heat Transfer, Vol. 101, pp. 217-221.
[13] Durst F., and Rastogi, A. K. , Turbulent Flow over Two-Dimensional Fences, Turbulent Shear Flow 2, Bradbury et al .eds., Berlin, Springer-Verlag, pp. 218-231. 1980.
[14] Yau-Ming Chen* and Kun-Chieh Wang “Numerical And Experiment Studies on Laminar Forced Convective Heat Transfer in A Channel with Surface Mounted Heated Blocks.” Journal of the Chinese Institute of Engineers, Vol. 19, No.6, pp. 669-679.1996.
[15] Yau-Ming Chen* and Kun-Chieh Wang “Experiment Study on The Forced Convective Flow in A Channel with Heated Blocks in Tandem.“1997。
[16] Hwang, J. J. and Liou, T. M. 1994,”Heat Transfer and Friction in a Rectangular Channel With Perforated Ribs Staggeringly Mounted on Two Opposited Walls.”
[17] Subhashis Ray and J. Srinivasan. ,”Analysis of Conjugate Laminar Mixed Convection in a Shrouded Array of Electronic Components”, In., J. Heat Mass Transfer, Vol.35, No. 4,pp.815-822, 1992.
[18] Oyakawa, K., and Mabuchi, I., “Fluid Flow and Heat Transfer in a Parallel Plate Duct Containing a Cylinder,” Bulletin of JSME , Vol.48, No 432 , pp 1509-1519. 1983.
[19] Treidler, B. Humphrey, J. A. C. and Carey, V. P., “On the Flow Past an array of Staggered Ribs in a Channel,”1990.
[20] J.P. Tsia, J.J. Hwang*,”Measurements of Heat Transfer and Fluid Flow in a Rectangular duct with Alternate Attached-Detached Rib-Array”, Int. Journal of Heat and Mass Transfer. Vol.42, pp 2071-2083.1999.
[21] C. W. Leung and H. J. Kang, ”Convective Heat Transfer from Simulated Air-Cooled Printed-Circuit Board Assembly Transfer On Horizontal or Vertical Orientation,” Int. Heat Mass Transfer,Vol.25, No.pp 67-80,1998.
[22] A. Bejan, ”Entropy Generation Minimization,” CRC Press, New York, 1995.
[23] B. S. Yilbas*, S. Z. Shuja, M. O. Budair, ”Second low analysis of a swirling flow in a circular duct with restriction,” Int. Journal of Heat and Mass Transfer Vol. 42, pp 4027-4041, 1999.
[24] G. E. Schuneider, and M. J. Raw, 1986, “A Skewed, Positive Influence Coefficient Upwinding Procedure For Control-Volume-Based Finite Element Convection-Diffusion Computation”, Numerical Heat Transfer, Vol. 8, No. 1, pp1-26.
[25] G. E. Schuneider, and M. J. Raw, 1987, “Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Collocated Variables-1. Computational Procedure,” Numerical Heat Transfer, Vol.11, pp 363-390.
[26] G. D. Raithby, 1976. “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computer Methods in Applied Mechanics and Engineering, Vol.9, pp. 153-164.
[27] 蔡文彬,”層流通過凸出物之流場及熱傳數值研究,”1990 .NCKU.
[28] R. G. Huget, 1985, “The Evaluation and Development of Approximation Schemes for the Finite Volume Method, “University of Waterloo, Ph. D. Thesis.
[29] C. M. Rhie and W. L. Chow, 1982, “A Numerical Study of Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,” AIAA. 82. 0998.
[30] C. Prakash and S. V. Patankar, 1985, “A Control Volume Based Finite Element Method for Solving the Navier-Stokes Equation Using Equal Order Velocity-Pressure Interpolation,” Numerical Heat Transfer, Vol. 8, No.3, pp.269-289.
[31] W. Aung, A. Baron, F. K. Tsou, ”Wall Independency and Effect of Initial Shear-Layer Thickness in Separated Flow and Heat Transfer,” Int. Journal of Heat Mass Transfer, Vol. 28, No. 9, 1985, pp. 1757-1771.
[32] W. Aung, ”An Interferometric Investigation of Separated Forced Convection in Laminar Flow Past Cavites,” Journal of Heat Transfer, Vol. 105,1983,pp. 505-512.
[33] A. Bhatti, W. Aung, “Finite Difference Analysis of Laminar Separated Forced Convection in Cavites,” Journal of Heat Transfer, Vol.106, 1984, pp 49-54.
[34] S.S. Hsieh, D. Y. Huang, ”Number Computation of Laminar Separated Forced Convection on Surface-Mounted Ribs, ”Numerical Heat Transfer, Vol. 12,1987, pp 335-348.
[35] J. Davalath, Y. Bayazitoglu, ”Forced Convection Cooling Across Rectangular Blocks,” Journal of Heat Transfer, Vol. 109,1987,pp 321-328.
[36] Kirk D. Hagen, ”Heat Transfer with Applications”. Prentice Hall International, Inc., New Jersey, pp

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top