跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭開文
研究生(外文):Kai-Wen Kuo
論文名稱:結合差動共焦顯微術與雷射光鉗在蛋白質彈性研究之應用
論文名稱(外文):Application of Using Differential Confocal Microscopy with Optical Tweezers in Protein Elasticity Research
指導教授:張寅張寅引用關係李超煌
指導教授(外文):Yin ChangChau-Hwang Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:46
中文關鍵詞:光鉗差動共焦肌凝蛋白肌動蛋白蛋白質彈性
外文關鍵詞:tweezersdifferential confocalmyosinactinprotein elasticity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
雷射光鉗自Ashkin 於1970 年開始研發以來,廣泛應用在許多生物樣
本的非侵入式操縱,特別是在與細胞骨骼相關的蛋白質研究上有長足進展。在雷射光鉗的技術中,對於被操縱物的軸向位移偵測技術的發展並未如橫向位移偵測般成熟。在本論文中我們引入了1997 年Lee 等人發展的差動共焦顯微術。該技術具有軸向解析率高、測量的動態範圍大、工作距離長的特色。我們將之與雷射光鉗結合,用以偵測光鉗中乳膠小珠的軸向運動。
我們架設的差動共焦鏡可以量測到系統本身的背景擾動16 nm。在使
用NA 1.3 的物鏡與27 mW 的雷射功率所形成的光鉗中,本系統可偵測出直徑3 µm 的乳膠小球約50 nm 尺度的軸向熱擾動,並且計算出光鉗的軸向彈性係數為2.34 µN/m,此軸向彈性係數隨雷射功率呈線性變化。
接著我們進一步以肌凝蛋白與肌動蛋白為樣本,量測蛋白質對小珠在
緩衝溶液中自然擾動的影響。實驗結果顯示小珠在蛋白質的環境中有較大的擾動現象,但此擾動在肌凝蛋白與肌動蛋白的結合下隨著軸向抬升有顯著降低。我們也從光鉗動態抬升小珠的過程中,即時偵測到肌凝蛋白與肌動蛋白的結合,會延遲小珠的軸向運動的特性。
我們已成功量測到肌凝蛋白與肌動蛋白的結合作用對小珠擾動與運
動的影響。本系統的動態測量範圍達3 µm 以上,結合其奈米解析度,極適合應用在蛋白質彈性研究上。
Since the first invention in 1970 by Ashkin, optical tweezers have become a versatile non-invasive tool extensively used in controlling tiny biological samples, especially cytoskeleton related proteins. In optical tweezers, the precise measurement of axial motion of a trapped object in optical tweezers is not as well developed as that of the lateral motion. In this thesis we have
introduced differential confocal microscopy (DCM), developed by Lee in 1997, into optical tweezers for the axial detection. DCM has advantageous features such as high depth resolution, large dynamic range, and long working distance.
Combined with optical tweezers, we can detect the axial movement of an optically trapped latex bead.
The resolution of axial position detection is 16 nm, which is limited by the background fluctuations of the whole system. We have detected about 50 nm scale of thermal fluctuation of a latex bead of 3 µm in diameter, trapped in a beam with a power of 27 mW through 1.3-NA objective lens. From the thermal fluctuations of the bead, we calculate the axial tweezers stiffness to be 2.34 µN/m at this power. We also find that the axial stiffness is linearly proportional to the laser power.
With this setup, we measured the effect of myosin–actin binding to the fluctuations of a trapped bead. The result shows the fluctuations of a bead are lager with the presence of protein in solution. However, as myosin–actin bonds formed, the fluctuations of the myosin-coated bead gradually decreased when we elevated the bead from actin-coated dish bottom. Also, we have observed the motion retardation of bead, caused by the tension of myosin–actin binding between the bead and the bottom.
We have successfully detected the binding effect of proteins to the motion of a trapped latex bead. In our experiment, the dynamic range of detection is lager than 3 µm, which makes the system suitable for the application of protein elasticity research.
1. Ashkin, A. Acceleration and trapping of particles by radiation pressure.
Physical Review Letters 24, 156-& (1970).
2. Ashkin, A. & Dziedzic, J.M. Stability of optical levitation by radiation
pressure. Applied Physics Letters 24, 586-588 (1974).
3. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers.
Proceedings of The National Academy of Sciences of The United States of
America 94, 4853-4860 (1997).
4. Tadir, Y. et al. Individualized approach to selection of ovum pick-up method
for invitro fertilization. Journal Of Gynecologic Surgery 5, 133-143 (1989).
5. Tadir, Y. et al. Micromanipulation of gametes using laser microbeams. Human
Reproduction 6, 1011-1016 (1991).
6. Block, S.M., Goldstein, L.S.B. & Schnapp, B.J. Using optical tweezers on
kinesin-coated beads moving along microtubules. Biophysical Journal 57,
A212-A212 (1990).
7. Svoboda, K., Schmidt, C.F., Branton, D. & Block, S.M. Elastic properties of
extracted red-blood-cell membrane skeletons. Faseb Journal 6, A523-A523
(1992).
8. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annual
Review of Biophysics And Biomolecular Structure 23, 247-285 (1994).
9. Wang, M.D., Yin, H., Landick, R., Gelles, J. & Block, S.M. Stretching DNA
with optical tweezers. Biophysical Journal 70, SUP63-SUP63 (1996).
10. Yin, H. et al. Transcription against an applied force. Science 270, 1653-1657
(1995).
11. Lee, C.H. & Wang, J.P. Noninterferometric differential confocal microscopy
with 2-nm depth resolution. Optics Communications 135, 233-237 (1997).
12. Lee, C.H., Guo, C.L. & Wang, J. Optical measurement of the viscoelastic and
biochemical responses of living cells to mechanical perturbation. Optics
Letters 23, 307-309 (1998).
13. Lee, C.-H., Lin, W.-C. & Wang, J. All-optical measurements of the bending
rigidity of lipid-vesicle membranes across structural phase transitions.
Physical Review E 64, 020901(R) (2001).
14. Lee, C.H., Chiang, H.Y. & Mong, H.Y. Sub-diffraction-limit imaging based on
the topographic contrast of differential confocal microscopy. Optics Letters 28,
45
1772-1774 (2003).
15. 許鵬飛供中風患者步行訓練之膝關節控制器設計. 碩士論文, (私立中原
大學醫學工程學系,2002).
16. Huxley, A.F. & Simmons, R.M. Mechanical properties of cross-bridges of frog
striated muscle. Journal of Physiology-London 218, P59-& (1971).
17. http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb2/part1/myosin.htm.
18. Ruppel, K.M. & Spudich, J.A. Structure-function analysis of the motor
domain of myosin. Annual Review of Cell And Developmental Biology 12,
543-573 (1996).
19. 吳崇安, 黃均正& 邱爾德光學嵌住之理論探討. 物理雙月刊 22, 485
(2000).
20. Ashkin, A. in Methods In Cell Biology, Vol 55, Vol. 55 1-27 (1998).
21. 曾勝陽, 張博睿, 謝錚鳴, 余怡德& 徐琅顯微鏡中的第三隻手. 物理雙
月刊 22, 494 (2000).
22. Sheetz, M.P. Methods in Cell Biology. (Academic, New York; 1998).
23. OriginPro, v. 7.5 (OriginLab Corporation, Northampton; 2004)
24. Novotny, L., Bian, R.X. & Xie, X.S. Theory of nanometric optical tweezers.
Physical Review Letters 79, 645-648 (1997).
25. Wright, S.J. & Wright, D.J. in Cell Biological Applications of Confocal
Microscopy, 2nd Edition, Vol. 70 1-12 (2002).
26. Pawley, J.B. Handbook of Biological Confocal Microscopy, Edn. 2nd.
(Plenum Press, New York and London; 1995).
27. Tsai, C.W., Lee, C.H. & Wang, J. Deconvolution of local surface response
from topography in nanometer profilometry with a dual-scan method. Optics
Letters 24, 1732-1734 (1999).
28. Ghislain, L.P. & Webb, W.W. Scanning-force microscope based on an optical
trap. Optic Letters 18, 1678 (1993).
29. L. P. Ghislain, N.A.S., and W. W. Webb Measurement of small forces using an
optical trap. Review of Scientific Instruments 65, 2762 (1994).
30. Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching B-DNA: The elastic
response of individual double-stranded and single-stranded DNA molecules.
Science 271, 795-799 (1996).
31. Visscher, K., Gross, S.P. & Block, S.M. Construction of multiple-beam optical
traps with nanometer-resolution position sensing. IEEE Journal of Selected
Topics In Quantum Electronics 2, 1066-1076 (1996).
32. Neuman, K.C. & Block, S.M. Optical trapping. Review of Scientific
Instruments 75, 2787-2809 (2004).
33. Gu, M., Haumonte, J.B., Micheau, Y., Chon, J.W.M. & Gan, X.S. Laser
trapping and manipulation under focused evanescent wave illumination.
Applied Physics Letters 84, 4236-4238 (2004).
34. Stelzer, E.H.K., Florin, E.L., Pralle, A. & Horber, J.K.H. Photonic force
microscope based on optical tweezers and two-photon excitation for biological
applications. Abstracts of Papers of The American Chemical Society 216,
U682-U682 (1998).
35. Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E.H.K. & Rber, J.K.H.H.
Three-dimensional high-resolution particle tracking for optical tweezers by
forward scattered light. Microscopy Research and Technique 44, 378-386
(1999).
36. Dreyer, J.K., Berg-Sorensen, K. & Oddershede, L. Improved axial position
detection in optical tweezers measurements. Applied Optics 43, 1991-1995
(2004).
37. Schwaiger, I., Sattler, C., Hostetter, D.R. & Rief, M. The myosin coiled-coil is
a truly elastic protein structure. Nature Materials 1, 232-235 (2002).
38. Konig, K., Becker, T.W., Fischer, P., Riemann, I. & Halbhuber, K.J.
Pulse-length dependence of cellular response to intense near-infrared laser
pulses in multiphoton microscopes. Optics Letters 24, 113-115 (1999).
39. Bangs, L.B. & Meza, M. in IVD Technology Magazine1995).
40. Hancock, K. & Tsang, V.C. Development and optimization of the
FAST-ELISA for detecting antibodies to Schistosoma mansoni. J Immunol
Methods 92, 167-176 (1986).
41. Wakayama, J.i. et al. Zigzag motions of the myosin-coated beads actively
sliding along actin filaments suspended between immobilized beads.
Biochimica et Biophysica Acta 1573, 93 (2002).
42. Molloy, J.E. & Padgett, M.J. Lights, action: optical tweezers. Contemporary
Physics 43, 241-258 (2002).
43. Jeney, S., K., E.H., Stelzer, Grubmüller, H. & Florin, E.-L. Mechanical
Properties of Single Motor Molecules Studied by Three-Dimensional Thermal
Force Probing in Optical Tweezers. ChemPhysChem 5, 1150-1158 (2004).
44. Neuman, K.C., Abbondanzieri, E.A. & Block, S.M. Measurement of the
effective focal shift in an optical trap. Optics Letters 30, 1318 (2005).
45. Clapp, A.R., Ruta, A.G. & Dickinsona, R.B. Three-dimensional optical
trapping and evanescent wave light scattering for direct measurement of long
range forces between a colloidal particle and a surface. Review of Scientific
Instruments 70, 2627-2636 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top